7 research outputs found

    SAW RFID devices using connected IDTs as an alternative to conventional reflectors for harsh environments

    Get PDF
    International audienceRemote interrogation of surface acoustic wave ID-tags imposes a high signal amplitude which is related to a high coupling coefficient value (K 2) and low propagation losses (α). In this paper, we propose and discuss an alternative configuration to the standard one. Here, we replaced the conventional configuration, i.e. one interdigital transducer (IDT) and several reflectors, by a series of electrically connected IDTs. The goal is to increase the amplitude of the detected signal using direct transmission between IDTs instead of the reflection from passive reflectors. This concept can therefore increase the interrogation scope of ID-tags made on conventional substrate with high K 2 value. Moreover, it can also be extended to suitable substrates for harsh environments such as high temperature environments: the materials used exhibit limited performances (low K 2 value and relatively high propagation losses) and are therefore rarely used for identification applications. The concept was first tested and validated using the lithium niobate 128°Y-X cut substrate, which is commonly used in ID-tags. A good agreement between experimental and numerical results was obtained for the promising concept of connected IDTs. The interesting features of the structure were also validated using a langasite substrate, which is well-known to operate at very high temperatures. Performances of both substrates (lithium niobate and langasite) were tested with an in-situ RF characterization up to 600°C. Unexpected results regarding the resilience of devices based on congruent lithium niobate were obtained. Index Terms-high temperature, lithium niobate, radio frequency identification (RFID), surface acoustic wave (SAW

    Modeling of a wireless SAW temperature sensor and associated antenna

    No full text
    International audienceSurface acoustic wave( SAW) resonator used as wireless sensor was characterized and the parameters of its MBVD(Modified Butterworth-Van Dyke) model were extracted versus temperature. The extracted parameters lead to evaluate the resonator performancesin terms of Temperature coefficient of frequency(TCF) and quality factor(Q). An antenna was then associated with the SAW resonator and the entire system has been characterized and modeled. The good agreement experiment-simulation allows to define the optimum operating conditions of the wireless sensor

    First investigations on stoichiometric lithium niobate as piezoelectric substrate for high-temperature surface acoustic waves applications

    No full text
    International audienceSurface acoustic waves (SAW) technology is very promising to achieve high-temperature wireless sensors. However, there is currently a need for piezoelectric substrates with a high electromechanical coupling coefficient (K2 > 1%), able to operate under harsh environments, especially in the intermediate temperature range (300-600°C). None of the conventional SAW substrate can face this challenge. In particular congruent lithium niobate, whose K2 can exceed 5%, shows serious limitations from 300°C, mainly related to Li vacancies. Recent studies have demonstrated the potential of stoichiometric lithium niobate (s-LN) for high-temperature bulk acoustic waves applications. In this paper, we investigate this piezoelectric material for high-temperature SAW applications. In particular, we examine carefully the potential structural and chemical changes that s-LN surface can undergo during a high-temperature exposure. Finally, SAW resonators based on s-LN substrates are in situ characterized up to 600°C

    Enhanced Performance Love Wave Magnetic Field Sensors with Temperature Compensation

    No full text
    International audienceTemperature compensation is critical and important for surface acoustic wave (SAW) magnetic field sensors. In this study, a Love wave mode based SAW device is investigated as a magnetic field sensor. The considered structure is composed of a CoFeB magnetostrictive film as sensitive layer, SiO2, and ZnO film as insulating and temperature compensation layers and ST+90°-cut quartz as substrate. A theoretical model is proposed to study the magnetic field sensitivity and temperature coefficient of frequency (TCF) variations. Optimized structures by calculation were fabricated and characterized and obtained results show a good agreement between experiments and our model simulation. We clearly shown that signal performances as well as the flexibility of the resonator design were improved by adding the isolating SiO2 layer. Thus, a sensor showing a near zero TCF (0.1 ppm/°C) and a magnetic field sensitivity of-420 ppm/mT was achieved with the structure CoFeB(100 nm)/SiO2(250 nm)/ZnO(300 nm)/ Quartz(ST-X+90°). This multi-layered structure is beneficial to design reliable SAW magnetic field sensors

    Design and Characterization of High-Q SAW Resonators Based on the AlN/Sapphire Structure Intended for High-Temperature Wireless Sensor Applications

    No full text
    International audienceAluminium nitride piezoelectric thin films grown on sapphire are strong candidates for high-temperature surface acoustic wave (SAW) sensors, due to their thermal stability, large bandgap, high acoustic velocity and suitable electromechanical coupling. However, thin-film resonators need more design efforts than those based on bulk crystals, due to the usually limited thickness of the piezoelectric films, and to acoustic properties disparities between the latters and their host substrate. This work presents an optimization of AlN/Sapphire-based SAW resonators with high quality factors for high-temperature applications. It combines specifically grown, 3 µm-thick aluminium nitride films, with the use of aluminium electrodes for their low density and resistivity, as an alternative to heavier electrodes like Pt. These electrodes allow for much lower mechanical losses and higher quality factors, in spite of needing passivation for increased lifetime. A standard resonator design is first presented and used for preliminary tests, in order to monitor the AlN/Sapphire structure with unprotected aluminium electrodes, for temperatures up to 600°C. A quasi-synchronous, optimized design is then proposed for higher quality factors and wireless sensing compliance. The high temperature characterizations confirmed that much larger quality factors can be retrieved from this optimized design. The quasi-synchronous resonators proposed in this study remain well-tuned for temperatures up to 400°C, and show high quality factors, as high as 3400 at 400°C

    Temperature compensated magnetic field sensor based on Love waves

    No full text
    International audienceA temperature compensated magnetic field sensor based on the combination of CoFeB ferromagnetic thin films and Quartz/ZnO Love waveguide platform is developed and optimized. The Love wave is a shear horizontal guided wave and therefore provides an optimal interaction with magnetisation in the magneto-elastic thin film resulting in higher acoustic wave magneto-elastic coupling compared to the conventional Rayleigh wave based devices. ST-cut Quartz was chosen as substrate, ZnO as insulating layer for Love wave generation and temperature coefficient of frequency (TCF) compensation and CoFeB as the magnetostrictive layer sensitive to magnetic field. Experimental results show a magneto-acoustic sensitivity of 15.53 MHz/T with almost zero TCF
    corecore