2,454 research outputs found

    Formwork with Variable Geometry for Concrete Shells Production Technology

    Get PDF
    One of the main constructive materials in the building sphere is a precast concrete and fiber concrete. It is well influenced by scientific research basis, development and implementation of progressive technologies. The fiber concrete it is an ideal material with practically unlimited number of shapes. A nomenclature of concrete articles increases, it is working on different shape formation and processing. While preparation for this document started with the concept fabrication, it is necessary to understand the methods of construction variable geometry formwork of concrete thin-shell surfaces, both past and present as a point of departure. An understanding of this background helps provide an essential foundation for the exploration of new potential advances in the field of thin-shell construction. Obviously that is the reason for fiber concrete to be the most widespread constructive building material all over the world. In the article are considered shell development technology features and is evaluated technical and economical effectiveness of concrete shells with thin walls. Now variable geometry systems from flexible materials are developing and improving, there is a great potential followed by modern events in concrete technology. The results of laboratory experiments have proved that the technology can be used for fibro concrete shell production and construction

    Maximal information component analysis: a novel non-linear network analysis method.

    Get PDF
    BackgroundNetwork construction and analysis algorithms provide scientists with the ability to sift through high-throughput biological outputs, such as transcription microarrays, for small groups of genes (modules) that are relevant for further research. Most of these algorithms ignore the important role of non-linear interactions in the data, and the ability for genes to operate in multiple functional groups at once, despite clear evidence for both of these phenomena in observed biological systems.ResultsWe have created a novel co-expression network analysis algorithm that incorporates both of these principles by combining the information-theoretic association measure of the maximal information coefficient (MIC) with an Interaction Component Model. We evaluate the performance of this approach on two datasets collected from a large panel of mice, one from macrophages and the other from liver by comparing the two measures based on a measure of module entropy, Gene Ontology (GO) enrichment, and scale-free topology (SFT) fit. Our algorithm outperforms a widely used co-expression analysis method, weighted gene co-expression network analysis (WGCNA), in the macrophage data, while returning comparable results in the liver dataset when using these criteria. We demonstrate that the macrophage data has more non-linear interactions than the liver dataset, which may explain the increased performance of our method, termed Maximal Information Component Analysis (MICA) in that case.ConclusionsIn making our network algorithm more accurately reflect known biological principles, we are able to generate modules with improved relevance, particularly in networks with confounding factors such as gene by environment interactions

    EXPERIMENTAL STUDY AND NUMERICAL MODELLING FOR FLEXURAL CAPACITY OF FRC STRUCTURAL ELEMENTS

    Get PDF
    Concrete reinforced by short steel fibres is typical brittle matrix composite, in which fibres are impeding cracks growth, such way increasing material’s tensile strength. The use of steel fibre reinforced concrete (SFRC) in structures with high physical and mechanical characteristics makes possible to reduce their weight and cost, to simplify their production technology, to reduce or eliminate reinforcement labour, at the same time increasing reliability and durability. Randomly distributed discontinuous fibres are bridging the crack’s flanks providing material’s “ductility”- like non-linear behaviour at cracking stage. The current study is focused on one formulation of a specific type of concrete matrix with added fibres and without fibres. Concrete cubes and prisms without fibres and having in every situation the same content of 60 mm long fibres were fabricated. Cubes (100×100×100 mm) were tested in compression and beams (100×100×400 mm prisms) were tested under four-point bending (4PBT). Fracture process (crack growth) in the material was modelled, based on experimental results (part of experimental data was used). Finite element method (FEM) using the ANSYS program analysis were realized modelling stress distributions in the broken beams with the goal to predict fracture process. Model’s prediction was validated

    A comparison between whole transcript and 3' RNA sequencing methods using Kapa and Lexogen library preparation methods.

    Get PDF
    Background3' RNA sequencing provides an alternative to whole transcript analysis. However, we do not know a priori the relative advantage of each method. Thus, a comprehensive comparison between the whole transcript and the 3' method is needed to determine their relative merits. To this end, we used two commercially available library preparation kits, the KAPA Stranded mRNA-Seq kit (traditional method) and the Lexogen QuantSeq 3' mRNA-Seq kit (3' method), to prepare libraries from mouse liver RNA. We then sequenced and analyzed the libraries to determine the advantages and disadvantages of these two approaches.ResultsWe found that the traditional whole transcript method and the 3' RNA-Seq method had similar levels of reproducibility. As expected, the whole transcript method assigned more reads to longer transcripts, while the 3' method assigned roughly equal numbers of reads to transcripts regardless of their lengths. We found that the 3' RNA-Seq method detected more short transcripts than the whole transcript method. With regard to differential expression analysis, we found that the whole transcript method detected more differentially expressed genes, regardless of the level of sequencing depth.ConclusionsThe 3' RNA-Seq method was better able to detect short transcripts, while the whole transcript RNA-Seq was able to detect more differentially expressed genes. Thus, both approaches have relative advantages and should be selected based on the goals of the experiment

    High-Density Genotypes of Inbred Mouse Strains: Improved Power and Precision of Association Mapping.

    Get PDF
    Human genome-wide association studies have identified thousands of loci associated with disease phenotypes. Genome-wide association studies also have become feasible using rodent models and these have some important advantages over human studies, including controlled environment, access to tissues for molecular profiling, reproducible genotypes, and a wide array of techniques for experimental validation. Association mapping with common mouse inbred strains generally requires 100 or more strains to achieve sufficient power and mapping resolution; in contrast, sample sizes for human studies typically are one or more orders of magnitude greater than this. To enable well-powered studies in mice, we have generated high-density genotypes for ∼175 inbred strains of mice using the Mouse Diversity Array. These new data increase marker density by 1.9-fold, have reduced missing data rates, and provide more accurate identification of heterozygous regions compared with previous genotype data. We report the discovery of new loci from previously reported association mapping studies using the new genotype data. The data are freely available for download, and Web-based tools provide easy access for association mapping and viewing of the underlying intensity data for individual loci

    Allele-specific expression and eQTL analysis in mouse adipose tissue.

    Get PDF
    BackgroundThe simplest definition of cis-eQTLs versus trans, refers to genetic variants that affect expression in an allele specific manner, with implications on underlying mechanism. Yet, due to technical limitations of expression microarrays, the vast majority of eQTL studies performed in the last decade used a genomic distance based definition as a surrogate for cis, therefore exploring local rather than cis-eQTLs.ResultsIn this study we use RNAseq to explore allele specific expression (ASE) in adipose tissue of male and female F1 mice, produced from reciprocal crosses of C57BL/6J and DBA/2J strains. Comparison of the identified cis-eQTLs, to local-eQTLs, that were obtained from adipose tissue expression in two previous population based studies in our laboratory, yields poor overlap between the two mapping approaches, while both local-eQTL studies show highly concordant results. Specifically, local-eQTL studies show ~60% overlap between themselves, while only 15-20% of local-eQTLs are identified as cis by ASE, and less than 50% of ASE genes are recovered in local-eQTL studies. Utilizing recently published ENCODE data, we also find that ASE genes show significant bias for SNPs prevalence in DNase I hypersensitive sites that is ASE direction specific.ConclusionsWe suggest a new approach to analysis of allele specific expression that is more sensitive and accurate than the commonly used fisher or chi-square statistics. Our analysis indicates that technical differences between the cis and local-eQTL approaches, such as differences in genomic background or sex specificity, account for relatively small fraction of the discrepancy. Therefore, we suggest that the differences between two eQTL mapping approaches may facilitate sorting of SNP-eQTL interactions into true cis and trans, and that a considerable portion of local-eQTL may actually represent trans interactions

    Vasculitis, Atherosclerosis, and Altered HDL Composition in Heme-Oxygenase-1-Knockout Mice

    Get PDF
    To elucidate roles of heme oxygenase-1 (HO-1) in cardiovascular system, we have analyzed one-year-old HO-1-knockout mice. Homozygous HO-1-knockout mice had severe aortitis and coronary arteritis with mononuclear cellular infiltration and fatty streak formation even on a standard chow diet. Levels of plasma total cholesterol and HDL were similar among the three genotypes. However, homozygous HO-1-knockout mice had lower body weight and plasma triglyceride. HO-1-deficiency resulted in alteration of the composition of HDL. The ratio of apolipoprotein AI to AII in HO-1-knockout mice was reduced about 10-fold as compared to wild-type mice. In addition, paraoxonase, an enzyme against oxidative stress, was reduced less than 50% in HO-1-knockout mice. The knockout mice also exhibited significant elevation of plasma lipid hydroperoxides. This study using aged HO-1-knockout mice strengthened the idea that HO-1 functions to suppress systemic inflammation in artery wall and prevents plasma lipid peroxidation
    corecore