43 research outputs found

    Computing Lens for Exploring the Historical People's Social Network

    Full text link
    A typical social research topic is to figure out the influential people's relationship and its weights. It is very tedious for social scientists to solve those problems by studying massive literature. Digital humanities bring a new way to a social subject. In this paper, we propose a framework for social scientists to find out ancient figures' power and their camp. The core of our framework consists of signed graph model and novel group partition algorithm. We validate and verify our solution by China Biographical Database Project (CBDB) dataset. The analytic results on a case study demonstrate the effectiveness of our framework, which gets information that consists with the literature's facts and social scientists' viewpoints.Comment: accepted at SoNet 201

    Unsupervised Domain Adaptive Detection with Network Stability Analysis

    Full text link
    Domain adaptive detection aims to improve the generality of a detector, learned from the labeled source domain, on the unlabeled target domain. In this work, drawing inspiration from the concept of stability from the control theory that a robust system requires to remain consistent both externally and internally regardless of disturbances, we propose a novel framework that achieves unsupervised domain adaptive detection through stability analysis. In specific, we treat discrepancies between images and regions from different domains as disturbances, and introduce a novel simple but effective Network Stability Analysis (NSA) framework that considers various disturbances for domain adaptation. Particularly, we explore three types of perturbations including heavy and light image-level disturbances and instancelevel disturbance. For each type, NSA performs external consistency analysis on the outputs from raw and perturbed images and/or internal consistency analysis on their features, using teacher-student models. By integrating NSA into Faster R-CNN, we immediately achieve state-of-the-art results. In particular, we set a new record of 52.7% mAP on Cityscapes-to-FoggyCityscapes, showing the potential of NSA for domain adaptive detection. It is worth noticing, our NSA is designed for general purpose, and thus applicable to one-stage detection model (e.g., FCOS) besides the adopted one, as shown by experiments. https://github.com/tiankongzhang/NSA

    Improved Machine Learning-Based Predictive Models for Breast Cancer Diagnosis

    Get PDF
    Breast cancer death rates are higher than any other cancer in American women. Machine learning-based predictive models promise earlier detection techniques for breast cancer diagnosis. However, making an evaluation for models that efficiently diagnose cancer is still challenging. In this work, we proposed data exploratory techniques (DET) and developed four different predictive models to improve breast cancer diagnostic accuracy. Prior to models, four-layered essential DET, e.g., feature distribution, correlation, elimination, and hyperparameter optimization, were deep-dived to identify the robust feature classification into malignant and benign classes. These proposed techniques and classifiers were implemented on the Wisconsin Diagnostic Breast Cancer (WDBC) and Breast Cancer Coimbra Dataset (BCCD) datasets. Standard performance metrics, including confusion matrices and K-fold cross-validation techniques, were applied to assess each classifier’s efficiency and training time. The models’ diagnostic capability improved with our DET, i.e., polynomial SVM gained 99.3%, LR with 98.06%, KNN acquired 97.35%, and EC achieved 97.61% accuracy with the WDBC dataset. We also compared our significant results with previous studies in terms of accuracy. The implementation procedure and findings can guide physicians to adopt an effective model for a practical understanding and prognosis of breast cancer tumors.publishedVersio

    Dual encoding for abstractive text summarization

    Get PDF
    Recurrent Neural Network (RNN) based sequence-to-sequence attentional models have proven effective in abstractive text summarization. In this paper, we model abstractive text summarization using a dual encoding model. Different from the previous works only using a single encoder, the proposed method employs a dual encoder including the primary and the secondary encoders. Specifically, the primary encoder conducts coarse encoding in a regular way, while the secondary encoder models the importance of words and generates more fine encoding based on the input raw text and the previously generated output text summarization. The two level encodings are combined and fed into the decoder to generate more diverse summary that can decrease repetition phenomenon for long sequence generation. The experimental results on two challenging datasets (i.e., CNN/DailyMail and DUC 2004) demonstrate that our dual encoding model performs against existing methods

    Text with Knowledge Graph Augmented Transformer for Video Captioning

    Full text link
    Video captioning aims to describe the content of videos using natural language. Although significant progress has been made, there is still much room to improve the performance for real-world applications, mainly due to the long-tail words challenge. In this paper, we propose a text with knowledge graph augmented transformer (TextKG) for video captioning. Notably, TextKG is a two-stream transformer, formed by the external stream and internal stream. The external stream is designed to absorb additional knowledge, which models the interactions between the additional knowledge, e.g., pre-built knowledge graph, and the built-in information of videos, e.g., the salient object regions, speech transcripts, and video captions, to mitigate the long-tail words challenge. Meanwhile, the internal stream is designed to exploit the multi-modality information in videos (e.g., the appearance of video frames, speech transcripts, and video captions) to ensure the quality of caption results. In addition, the cross attention mechanism is also used in between the two streams for sharing information. In this way, the two streams can help each other for more accurate results. Extensive experiments conducted on four challenging video captioning datasets, i.e., YouCookII, ActivityNet Captions, MSRVTT, and MSVD, demonstrate that the proposed method performs favorably against the state-of-the-art methods. Specifically, the proposed TextKG method outperforms the best published results by improving 18.7% absolute CIDEr scores on the YouCookII dataset.Comment: Accepted by CVPR202

    Scale Invariant Fully Convolutional Network: Detecting Hands Efficiently

    Full text link
    Existing hand detection methods usually follow the pipeline of multiple stages with high computation cost, i.e., feature extraction, region proposal, bounding box regression, and additional layers for rotated region detection. In this paper, we propose a new Scale Invariant Fully Convolutional Network (SIFCN) trained in an end-to-end fashion to detect hands efficiently. Specifically, we merge the feature maps from high to low layers in an iterative way, which handles different scales of hands better with less time overhead comparing to concatenating them simply. Moreover, we develop the Complementary Weighted Fusion (CWF) block to make full use of the distinctive features among multiple layers to achieve scale invariance. To deal with rotated hand detection, we present the rotation map to get rid of complex rotation and derotation layers. Besides, we design the multi-scale loss scheme to accelerate the training process significantly by adding supervision to the intermediate layers of the network. Compared with the state-of-the-art methods, our algorithm shows comparable accuracy and runs a 4.23 times faster speed on the VIVA dataset and achieves better average precision on Oxford hand detection dataset at a speed of 62.5 fps.Comment: Accepted to AAAI201
    corecore