2,167 research outputs found

    Photon counting compressive depth mapping

    Get PDF
    We demonstrate a compressed sensing, photon counting lidar system based on the single-pixel camera. Our technique recovers both depth and intensity maps from a single under-sampled set of incoherent, linear projections of a scene of interest at ultra-low light levels around 0.5 picowatts. Only two-dimensional reconstructions are required to image a three-dimensional scene. We demonstrate intensity imaging and depth mapping at 256 x 256 pixel transverse resolution with acquisition times as short as 3 seconds. We also show novelty filtering, reconstructing only the difference between two instances of a scene. Finally, we acquire 32 x 32 pixel real-time video for three-dimensional object tracking at 14 frames-per-second.Comment: 16 pages, 8 figure

    Overview of Highland Valley Tailings Storage Facility

    Get PDF
    This paper presents key features of the Highland Valley tailings storage facility comprising two tailings dams, a 107 m high H-H Dam and a 166 m high L-L Dam. The construction history to date including instrumentation observations is also reviewed. Although the tailings facility is situated in a low to moderate seismic area within the Interior Plateau of British Columbia, potential earthquake sources that might have an impact on the site have been carefully assessed. Both dams are designed to have adequate seismic resistance against design earthquakes appropriate for the site. The L-L Dam valley section, involving soft lacustrine deposits beneath the Starter Dam, has been buttressed by a compacted downstream berm founded on dense glacial till. As the geometry of the tailings storage and distribution facilities and waste dumps changes with time, the quantity and relative cost of various construction materials including natural borrow, cycloned sand and pit overburden also change. Ongoing construction is planned to maintain key earthquake and flood design criteria as well as to adjust the use and placement method of various materials to achieve an efficient and cost effective tailings storage operation. Inherent in the design of the two tailings dams, both constructed by the centerline method, is the flexibility which enables the storage capacity of the tailings facility to be increased beyond the present 1.8 billion tonnes if required at some future time

    Photon Counting Compressive Depth Mapping

    Get PDF
    We demonstrate a compressed sensing, photon counting lidar system based on the single-pixel camera. Our technique recovers both depth and intensity maps from a single under-sampled set of incoherent, linear projections of a scene of interest at ultra-low light levels around 0.5 picowatts. Only two-dimensional reconstructions are required to image a three-dimensional scene. We demonstrate intensity imaging and depth mapping at 256 × 256 pixel transverse resolution with acquisition times as short as 3 seconds. We also show novelty filtering, reconstructing only the difference between two instances of a scene. Finally, we acquire 32 × 32 pixel real-time video for three-dimensional object tracking at 14 frames-per-second

    Assortative human pair-bonding for partner ancestry and allelic variation of the dopamine receptor D4 (DRD4) gene

    Get PDF
    The 7R allele of the dopamine receptor D4 gene has been associated with attention-deficit hyperactivity disorder and risk taking. On the cross-population scale, 7R allele frequencies have been shown to be higher in populations with more of a history of long-term migrations. It has also been shown that the 7R allele is associated with individuals having multiple-ancestries. Here we conduct a replication of this latter finding with two independent samples. Measures of subjects’ ancestry are used to examine past reproductive bonds. The individuals’ history of inter-racial/ancestral dating and their feelings about this are also assessed. Tentative support for an association between multiple ancestries and the 7R allele were found. These results are dependent upon the method of questioning subjects about their ancestries. Inter-racial dating and feelings about inter-racial pairing were not related to the presence of the 7R allele. This might be accounted for by secular trends that might have substantively altered the decision-making process employed when considering relationships with individuals from different groups. This study provides continued support for the 7R allele playing a role in migration and/or mate choice patterns. However, replications and extensions of this study are needed and must carefully consider how ancestry/race is assessed

    Nodal to Nodeless Superconducting Energy-Gap Structure Change Concomitant with Fermi-Surface Reconstruction in the Heavy-Fermion Compound CeCoIn₅

    Get PDF
    The London penetration depth λ(T) was measured in single crystals of Ce1-xRxCoIn5, R = La, Nd, and Yb down to Tmin ≈ 50mK (Tc/Tmin ∼ 50) using a tunnel-diode resonator. In the cleanest samples Δλ(T) is best described by the power law Δλ(T) α Tn, with n ∼ 1, consistent with the existence of line nodes in the superconducting gap. Substitutions of Ce with La, Nd, and Yb lead to similar monotonic suppressions of Tc; however, the effects on Δλ(T) differ. While La and Nd substitution leads to an increase in the exponent n and saturation at n ∼ 2, as expected for a dirty nodal superconductor, Yb substitution leads to n \u3e 3, suggesting a change from nodal to nodeless superconductivity. This superconducting gap structure change happens in the same doping range where changes of the Fermi-surface topology were reported, implying that the nodal structure and Fermi-surface topology are closely linked

    Synthesis of Spherical 4R Mechanism for Path Generation using Differential Evolution

    Full text link
    The problem of path generation for the spherical 4R mechanism is solved using the Differential Evolution algorithm (DE). Formulas for the spherical geodesics are employed in order to obtain the parametric equation for the generated trajectory. Direct optimization of the objective function gives the solution to the path generation task without prescribed timing. Therefore, there is no need to separate this task into two stages to make the optimization. Moreover, the order defect problem can be solved without difficulty by means of manipulations of the individuals in the DE algorithm. Two examples of optimum synthesis showing the simplicity and effectiveness of this approach are included.Comment: Submitted to Mechanism and Machine Theor

    Wigs, disguises and child's play : solidarity in teacher education

    Get PDF
    It is generally acknowledged that much contemporary education takes place within a dominant audit culture, in which accountability becomes a powerful driver of educational practices. In this culture both pupils and teachers risk being configured as a means to an assessment and target-driven end: pupils are schooled within a particular paradigm of education. The article discusses some ethical issues raised by such schooling, particularly the tensions arising for teachers, and by implication, teacher educators who prepare and support teachers for work in situations where vocational aims and beliefs may be in in conflict with instrumentalist aims. The article offers De Certeau’s concept of ‘la perruque’ to suggest an opening to playful engagement for human ends in education, as a way of contending with and managing the tensions generated. I use the concept to recover a concept of solidarity for teacher educators and teachers to enable ethical teaching in difficult times

    Increasing the Power to Detect Causal Associations by Combining Genotypic and Expression Data in Segregating Populations

    Get PDF
    To dissect common human diseases such as obesity and diabetes, a systematic approach is needed to study how genes interact with one another, and with genetic and environmental factors, to determine clinical end points or disease phenotypes. Bayesian networks provide a convenient framework for extracting relationships from noisy data and are frequently applied to large-scale data to derive causal relationships among variables of interest. Given the complexity of molecular networks underlying common human disease traits, and the fact that biological networks can change depending on environmental conditions and genetic factors, large datasets, generally involving multiple perturbations (experiments), are required to reconstruct and reliably extract information from these networks. With limited resources, the balance of coverage of multiple perturbations and multiple subjects in a single perturbation needs to be considered in the experimental design. Increasing the number of experiments, or the number of subjects in an experiment, is an expensive and time-consuming way to improve network reconstruction. Integrating multiple types of data from existing subjects might be more efficient. For example, it has recently been demonstrated that combining genotypic and gene expression data in a segregating population leads to improved network reconstruction, which in turn may lead to better predictions of the effects of experimental perturbations on any given gene. Here we simulate data based on networks reconstructed from biological data collected in a segregating mouse population and quantify the improvement in network reconstruction achieved using genotypic and gene expression data, compared with reconstruction using gene expression data alone. We demonstrate that networks reconstructed using the combined genotypic and gene expression data achieve a level of reconstruction accuracy that exceeds networks reconstructed from expression data alone, and that fewer subjects may be required to achieve this superior reconstruction accuracy. We conclude that this integrative genomics approach to reconstructing networks not only leads to more predictive network models, but also may save time and money by decreasing the amount of data that must be generated under any given condition of interest to construct predictive network models
    corecore