18 research outputs found

    Application of rotating packed bed for in-line aroma stripping from cell slurry

    Get PDF
    BACKGROUND Nowadays, biotechnological production receives increasing interest as an alternative source of natural aromas. Unfortunately, especially for hydrophobic and semi-volatile aromas, the heterogeneous product partitioning between all phases present in fermentation makes recovery challenging. Additionally, when an aroma displays an inhibitory effect on the production microorganism, product removal during fermentation is recommendable. In-line aroma stripping offers an elegant way to deal with such challenges. This study reports the use of rotating packed bed (RPB) technology for the intensification of stripping of α-ionone, a key aroma of raspberry, from a model fermentation slurry containing Saccharomyces cerevisiae cells in a concentration of 250 g-CWW L−1. RESULTS Throughout all experimental investigations, yeast cells were robust towards both the chemical stress from aroma exposure at a concentration of up to 400 mg L−1 and the mechanical stress from peripheral equipment and rotation of up to 2750 rpm, as a maximum of 11.3 ± 0.5% disrupted cells were measured during continuous processing in an RPB. An increase in the rotation speed led to an enhanced transfer of α-ionone from the fermentation slurry to the gaseous phase. CONCLUSIONS RPB technology is found to be promising for the intensification of in-line stripping of biotechnologically produced aromas from crude fermentation broth without cell separation. The use of subsequent RPBs equipped with custom packings and flexibly adjustable rotation speed displays a holistic aroma recovery process supporting the way to commercial competitiveness of biotechnological aromas. © 2020 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry

    Unconventional superfluidity and quantum geometry of topological bosons

    Full text link
    We investigate superfluidity of bosons in gapped topological bands and discover a new phase that has no counterparts in the previous literature. This phase is characterized by a highly unconventional modulation of the order parameter, breaking the crystallographic symmetry, and for which the condensation momentum is neither zero nor any other high-symmetry vector of the Brillouin zone. This unconventional structure impacts the spectrum of Bogoliubov excitations and, consequently, the speed of sound in the system. Even in the case of perfectly flat bands, the speed of sound and Bogoliubov excitations remain nonvanishing, provided that the underlying topology and quantum geometry are nontrivial. Furthermore, we derive detailed expressions for the superfluid weight using the Popov hydrodynamic formalism for superfluidity and provide estimates for the Berezinskii-Kosterlitz-Thouless temperature, which is significantly enhanced by the nontriviality of the underlying quantum metric. These results are applicable to generic topological bosonic bands, with or without dispersion. To illustrate our findings, we employ the Haldane model with a tunable bandwidth, including the narrow lowest-band case. Within this model, we also observe a re-entrant superfluid behavior: As the Haldane's magnetic flux is varied, the Berezinskii-Kosterlitz-Thouless transition temperature initially decreases to almost zero, only to resurface with renewed vigor.Comment: 23 pages, 10 figure

    Aroma absorption in rapeseed oil using rotating packed bed

    Get PDF
    An increasing consumers’ call for natural aromas fuels the development of biotechnological aroma production. Although aroma fermentation is quite advantageous, especially severe product losses of volatile compounds through the bioreactor off-gas may challenge the downstream processing. The application of novel process intensification methods to overcome the common drawbacks of conventional apparatuses might be helpful on a way to commercial competitiveness of biotechnological aromas. This study explored the suitability of rotating packed bed (RPB), a rotating mass transfer enhancing machine, for the absorption of model aroma compounds in rapeseed oil. Increasing the rotation speed from 500 to 2750 rpm led to two- to threefold higher absorption efficiencies at elsewise constant conditions. Aiming for an enriched aromatic intermediate, 2.5 L of rapeseed oil was processed in a recycle for 200 minutes, and a final concentration of benzaldehyde of 0.323 ± 0.026 g/Loil was achieved. Compared to packed columns, the RPB outperforms at equal packing depth or requires less packing area to deliver same efficiency. Especially, the use of custom 3D-printed spiral packing with elaborated wall film flow combined with rotation supported liquid distribution allows using absorbents with viscosities as high as 100 mPa·s at low pressure drop increase. However, small dimensions severely limit the performance of a laboratory-scale RPB as the casing contributes disproportionally to mass transfer

    Geminate recombination dynamics studied via electron reexcitation: Kinetic analysis for anion CTTS photosystems

    Full text link
    Recently, it became practicable to study geminate recombination dynamics of solvated electrons in polar liquids by using short pulses of light to reexcite these electrons back into the conduction band of the liquid and observe a change in the fraction of electrons that escape geminate recombination. In this Letter, the potential of this technique to provide additional insight into the recombination dynamics of electrons generated by charge-transfer-to-solvent (CTTS) photodetachment from monovalent anions in polar liquids is studied theoretically. The resulting expression accounts for the recent results from B.J. Schwartz's group at UCLA for electron photodetachment from Na- in tetrahydrofuran.Comment: 12 pages, 1 figure; to be submitted to Chem. Phys. Let

    Opportunities for DOE National Laboratory-led QuantISED experiments

    Get PDF
    A subset of QuantISED Sensor PIs met virtually on May 26, 2020 to discuss a response to a charge by the DOE Office of High Energy Physics. In this document, we summarize the QuantISED sensor community discussion, including a consideration of HEP science enabled by quantum sensors, describing the distinction between Quantum 1.0 and Quantum 2.0, and discussing synergies/complementarity with the new DOE NQI centers and with research supported by other SC offices. Quantum 2.0 advances in sensor technology offer many opportunities and new approaches for HEP experiments. The DOE HEP QuantISED program could support a portfolio of small experiments based on these advances. QuantISED experiments could use sensor technologies that exemplify Quantum 2.0 breakthroughs. They would strive to achieve new HEP science results, while possibly spinning off other domain science applications or serving as pathfinders for future HEP science targets. QuantISED experiments should be led by a DOE laboratory, to take advantage of laboratory technical resources, infrastructure, and expertise in the safe and efficient construction, operation, and review of experiments. The QuantISED PIs emphasized that the quest for HEP science results under the QuantISED program is distinct from the ongoing DOE HEP programs on the energy, intensity, and cosmic frontiers. There is robust evidence for the existence of particles and phenomena beyond the Standard Model, including dark matter, dark energy, quantum gravity, and new physics responsible for neutrino masses, cosmic inflation, and the cosmic preference for matter over antimatter. Where is this physics and how do we find it? The QuantISED program can exploit new capabilities provided by quantum technology to probe these kinds of science questions in new ways and over a broader range of science parameters than can be achieved with conventional techniques

    Correction of Misclassifications Using a Proximity-Based Estimation Method

    Get PDF
    <p/> <p>An estimation method for correcting misclassifications in signal and image processing is presented. The method is based on the use of context-based (temporal or spatial) information in a sliding-window fashion. The classes can be purely nominal, that is, an ordering of the classes is not required. The method employs nonlinear operations based on class proximities defined by a proximity matrix. Two case studies are presented. In the first, the proposed method is applied to one-dimensional signals for processing data that are obtained by a musical key-finding algorithm. In the second, the estimation method is applied to two-dimensional signals for correction of misclassifications in images. In the first case study, the proximity matrix employed by the estimation method follows directly from music perception studies, whereas in the second case study, the optimal proximity matrix is obtained with genetic algorithms as the learning rule in a training-based optimization framework. Simulation results are presented in both case studies and the degree of improvement in classification accuracy that is obtained by the proposed method is assessed statistically using Kappa analysis.</p

    Single-spin qubit magnetic spectroscopy of two dimensional superconductivity

    Full text link
    A single-spin qubit placed near the surface of a conductor acquires an additional contribution to its 1/T11/T_1 relaxation rate due to magnetic noise created by electric current fluctuations in the material. We analyze this technique as a wireless probe of superconductivity in atomically thin two dimensional materials. At temperatures T≲TcT \lesssim T_c, the dominant contribution to the qubit relaxation rate is due to transverse electric current fluctuations arising from quasiparticle excitations. We demonstrate that this method enables detection of metal-to-superconductor transitions, as well as investigation of the symmetry of the superconducting gap function, through the noise scaling with temperature. We show that scaling of the noise with sample-probe distance provides a window into the non-local quasi-static conductivity of superconductors, both clean and disordered. At low temperatures the quasiparticle fluctuations get suppressed, yet the noise can be substantial due to resonant contributions from collective longitudinal modes, such as plasmons in monolayers and Josephson plasmons in bilayers. Potential experimental implications are discussed.Comment: 5 + 2 pages, 3 figure

    Discovery of Trace Amine-Associated Receptor 1 (TAAR1) Agonist 2-(5-(4′-Chloro-[1,1′-biphenyl]-4-yl)-4<i>H</i>-1,2,4-triazol-3-yl)ethan-1-amine (LK00764) for the Treatment of Psychotic Disorders

    No full text
    A focused in-house library of about 1000 compounds comprising various heterocyclic motifs in combination with structural fragments similar to β-phenylethylamine or tyramine was screened for the agonistic activity towards trace amine-associated receptor 1 (TAAR1). The screening yielded two closely related hits displaying EC50 values in the upper submicromolar range. Extensive analog synthesis and testing for TAAR1 agonism in a BRET-based cellular assay identified compound 62 (LK00764) with EC50 = 4.0 nM. The compound demonstrated notable efficacy in such schizophrenia-related in vivo tests as MK-801-induced hyperactivity and spontaneous activity in rats, locomotor hyperactivity of dopamine transporter knockout (DAT-KO) rats, and stress-induced hyperthermia (i.p. administration). Further preclinical studies are necessary to evaluate efficacy, safety and tolerability of this potent TAAR1 agonist for the potential development of this compound as a new pharmacotherapy option for schizophrenia and other psychiatric disorders
    corecore