Unconventional superfluidity and quantum geometry of topological bosons

Abstract

We investigate superfluidity of bosons in gapped topological bands and discover a new phase that has no counterparts in the previous literature. This phase is characterized by a highly unconventional modulation of the order parameter, breaking the crystallographic symmetry, and for which the condensation momentum is neither zero nor any other high-symmetry vector of the Brillouin zone. This unconventional structure impacts the spectrum of Bogoliubov excitations and, consequently, the speed of sound in the system. Even in the case of perfectly flat bands, the speed of sound and Bogoliubov excitations remain nonvanishing, provided that the underlying topology and quantum geometry are nontrivial. Furthermore, we derive detailed expressions for the superfluid weight using the Popov hydrodynamic formalism for superfluidity and provide estimates for the Berezinskii-Kosterlitz-Thouless temperature, which is significantly enhanced by the nontriviality of the underlying quantum metric. These results are applicable to generic topological bosonic bands, with or without dispersion. To illustrate our findings, we employ the Haldane model with a tunable bandwidth, including the narrow lowest-band case. Within this model, we also observe a re-entrant superfluid behavior: As the Haldane's magnetic flux is varied, the Berezinskii-Kosterlitz-Thouless transition temperature initially decreases to almost zero, only to resurface with renewed vigor.Comment: 23 pages, 10 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions