74 research outputs found

    Plant responses to hypoxia: Signaling and adaptation

    Get PDF
    Molecular oxygen deficiency leads to altered cellular metabolism and can dramatically reducecrop productivity. Nearly all crops are negatively affected by lack of oxygen (hypoxia) due to adverseenvironmental conditions such as excessive rain and soil waterlogging. Extensive efforts to fullyunderstand how plants sense oxygen deficiency and their ability to respond using different strategiesare crucial to increase hypoxia tolerance. It was estimated that 57% of crop losses are due to floods. Progress in our understanding has been significant in the last years. This topic deserved moreattention from the academic community; therefore, we have compiled a Special Issue including fourreviews and thirteen research articles reflecting the advancements made thus far.Fil: Loreti, Elena. Institute of Agricultural Biology and Biotechnolog; Italia. Consiglio Nazionale delle Ricerche; ItaliaFil: Striker, Gustavo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentin

    Plant responses to flooding stress

    Get PDF
    Most plant species cannot survive prolonged submergence or soil waterlogging. Crops are particularly intolerant to the lack of oxygen arising from submergence. Rice can instead germinate and grow even if submerged. The molecular basis for rice tolerance was recently unveiled and will contribute to the development of better rice varieties, well adapted to flooding. The oxygen sensing mechanism was also recently discovered. This system likely operates in all plant species and relies on the oxygen-dependent destabilization of the group VII ethylene response factors (ERFVIIs), a cluster of ethylene responsive transcription factors. An homeostatic mechanism that controls gene expression in plants subjected to hypoxia prevents excessive activation of the anaerobic metabolism that could be detrimental to surviving the stress

    ERFVII transcription factors and their role in the adaptation to hypoxia in Arabidopsis and crops

    Get PDF
    In this review, we focus on ethylene transcription factors (ERFs), which are a crucial family of transcription factors that regulate plant development and stress responses. ERFVII transcription factors have been identified and studied in several crop species, including rice, wheat, maize, barley, and soybean. These transcription factors are known to be involved in regulating the plant’s response to low oxygen stress—hypoxia and could thus improve crop yields under suboptimal growing conditions. In rice (Oryza sativa) several ERFVII genes have been identified and characterized, including SUBMERGENCE 1A (SUB1A), which enables rice to tolerate submergence. The SUB1A gene was used in the development of SUB1 rice varieties, which are now widely grown in flood-prone areas and have been shown to improve yields and farmer livelihoods. The oxygen sensor in plants was discovered using the model plant Arabidopsis. The mechanism is based on the destabilization of ERFVII protein via the N-degron pathway under aerobic conditions. During hypoxia, the stabilized ERFVIIs translocate to the nucleus where they activate the transcription of hypoxia-responsive genes (HRGs). In summary, the identification and characterization of ERFVII transcription factors and their mechanism of action could lead to the development of new crop varieties with improved tolerance to low oxygen stress, which could have important implications for global food security

    Discovering Business Processes models expressed as DNF or CNF formulae of Declare constraints

    Get PDF
    In the field of Business Process Management, the Process Discovery task is one of the most important and researched topics. It aims to automatically learn process models starting from a given set of logged execution traces. The majority of the approaches employ procedural languages for describing the discovered models, but declarative languages have been proposed as well. In the latter category there is the Declare language, based on the notion of constraint, and equipped with a formal semantics on LTLf. Also, quite common in the field is to consider the log as a set of positive examples only, but some recent approaches pointed out that a binary classification task (with positive and negative examples) might provide better outcomes. In this paper, we discuss our preliminary work on the adaptation of some existing algorithms for Inductive Logic Programming, to the specific setting of Process Discovery: in particular, we adopt the Declare language with its formal semantics, and the perspective of a binary classification task (i.e., with positive and negative examples

    Kynurenine/Tryptophan Ratio as a Potential Blood-Based Biomarker in Non-Small Cell Lung Cancer

    Get PDF
    The enzyme indoleamine 2,3-dioxygenase 1 (IDO1) degrade tryptophan (Trp) into kynurenine (Kyn) at the initial step of an enzymatic pathway affecting T cell proliferation. IDO1 is highly expressed in various cancer types and associated with poor prognosis. Nevertheless, the serum Kyn/Trp concentration ratio has been suggested as a marker of cancer-associated immune suppression. We measured Kyn and Trp in blood samples of a wide cohort of non-small-cell lung cancer (NSCLC) patients, before they underwent surgery, and analyzed possible correlations of the Kyn/Trp ratio with either IDO1 expression or clinical-pathological parameters. Low Kyn/Trp significantly correlated with low IDO1 expression and never-smoker patients; while high Kyn/Trp was significantly associated with older (>= 68 years) patients, advanced tumor stage, and squamous cell carcinoma (Sqcc), rather than the adenocarcinoma (Adc) histotype. Moreover, high Kyn/Trp was associated, among the Adc group, with higher tumor stages (II and III), and, among the Sqcc group, with a high density of tumor-infiltrating lymphocytes. A trend correlating the high Kyn/Trp ratio with the probability of recurrences from NSCLC was also found. In conclusion, high serum Kyn/Trp ratio, associated with clinical and histopathological parameters, may serve as a serum biomarker to optimize risk stratification and therapy of NSCLC patients

    HABITAT: An IoT Solution for Independent Elderly

    Get PDF
    In this work, a flexible and extensive digital platform for Smart Homes is presented, exploiting the most advanced technologies of the Internet of Things, such as Radio Frequency Identification, wearable electronics, Wireless Sensor Networks, and Artificial Intelligence. Thus, the main novelty of the paper is the system-level description of the platform flexibility allowing the interoperability of different smart devices. This research was developed within the framework of the operative project HABITAT (Home Assistance Based on the Internet of Things for the Autonomy of Everybody), aiming at developing smart devices to support elderly people both in their own houses and in retirement homes, and embedding them in everyday life objects, thus reducing the expenses for healthcare due to the lower need for personal assistance, and providing a better life quality to the elderly users

    The Many Facets of Hypoxia in Plants

    No full text
    Plants are aerobic organisms that require oxygen for their respiration. Hypoxia arises due to the insufficient availability of oxygen, and is sensed by plants, which adapt their growth and metabolism accordingly. Plant hypoxia can occur as a result of excessive rain and soil waterlogging, thus constraining plant growth. Increasing research on hypoxia has led to the discovery of the mechanisms that enable rice to be productive even when partly submerged. The identification of Ethylene Response Factors (ERFs) as the transcription factors that enable rice to survive submergence has paved the way to the discovery of oxygen sensing in plants. This, in turn has extended the study of hypoxia to plant development and plant–microbe interaction. In this review, we highlight the many facets of plant hypoxia, encompassing stress physiology, developmental biology and plant pathology
    corecore