126 research outputs found

    An unsteady helicopter rotor: Fuselage interaction analysis

    Get PDF
    A computational method was developed to treat unsteady aerodynamic interactions between a helicopter rotor, wake, and fuselage and between the main and tail rotors. An existing lifting line prescribed wake rotor analysis and a source panel fuselage analysis were coupled and modified to predict unsteady fuselage surface pressures and airloads. A prescribed displacement technique is used to position the rotor wake about the fuselage. Either a rigid blade or an aeroelastic blade analysis may be used to establish rotor operating conditions. Sensitivity studies were performed to determine the influence of the wake fuselage geometry on the computation. Results are presented that describe the induced velocities, pressures, and airloads on the fuselage and on the rotor. The ability to treat arbitrary geometries is demonstrated using a simulated helicopter fuselage. The computational results are compared with fuselage surface pressure measurements at several locations. No experimental data was available to validate the primary product of the analysis: the vibratory airloads on the entire fuselage. A main rotor-tail rotor interaction analysis is also described, along with some hover and forward flight

    Unsteady transition measurements on a pitching three-dimensional wing

    Get PDF
    Boundary layer transition measurements were made during an experimental study of the aerodynamics of a rectangular wing undergoing unsteady pitching motions. The wing was tested at chordwise Mach numbers between 0.2 and 0.6, at sweep angles of 0, 15, and 30 deg, and for steady state, sinusoidal, and constant pitch rate motions. The model was scaled to represent a full size helicopter rotor blade, with chord Reynolds numbers between 2 and 6 x 10(exp 6). Sixteen surface hot-film gages were located along three spanwise stations: 0.08, 0.27, and 0.70 chords from the wing tip. Qualitative heat transfer information was obtained to identify the unsteady motion of the point of transition to turbulence. In combination with simultaneous measurements of the unsteady surface pressure distributions, the results illustrate the effects of compressibility, sweep, pitch rate, and proximity to the wing tip on the transition and relaminarization locations

    Airfoil stall penetration at constant pitch rate and high Reynolds number

    Get PDF
    The model wing consists of a set of fiberglass panels mounted on a steel spar that spans the 8 ft test section of the UTRC Large Subsonic Wind Tunnel. The first use of this system was to measure surface pressures and flow conditions for a series of constant pitch rate ramps and sinusoidal oscillations a Mach number range, a Reynolds number range, and a pitch angle range. It is concluded that an increased pitch rate causes stall events to be delayed, strengthening of the stall vortex, increase in vortex propagation, and increase in unsteady airloads. The Mach number range causes a supersonic zone near the leading edge, stall vortex to be weaker, and a reduction of unsteady airloads

    Program user's manual for an unsteady helicopter rotor-fuselage aerodynamic analysis

    Get PDF
    The Rotor-Fuselage Analysis is a method of calculating the aerodynamic reaction between a helicopter rotor and fuselage. This manual describes the structure and operation of the computer programs that make up the Rotor-Fuselage Analysis, programs which prepare the input and programs which display the output

    Wind tunnel test of a variable-diameter tiltrotor (VDTR) model

    Get PDF
    This report documents the results from a wind tunnel test of a 1/6th scale Variable Diameter Tiltrotor (VDTR). This test was a joint effort of NASA Ames and Sikorsky Aircraft. The objective was to evaluate the aeroelastic and performance characteristics of the VDTR in conversion, hover, and cruise. The rotor diameter and nacelle angle of the model were remotely changed to represent tiltrotor operating conditions. Data is presented showing the propulsive force required in conversion, blade loads, angle of attack stability and simulated gust response, and hover and cruise performance. This test represents the first wind tunnel test of a variable diameter rotor applied to a tiltrotor concept. The results confirm some of the potential advantages of the VDTR and establish the variable diameter rotor a viable candidate for an advanced tiltrotor. This wind tunnel test successfully demonstrated the feasibility of the Variable Diameter rotor for tilt rotor aircraft. A wide range of test points were taken in hover, conversion, and cruise modes. The concept was shown to have a number of advantages over conventional tiltrotors such as reduced hover downwash with lower disk loading and significantly reduced longitudinal gust response in cruise. In the conversion regime, a high propulsive force was demonstrated for sustained flight with acceptable blade loads. The VDTR demonstrated excellent gust response capabilities. The horizontal gust response correlated well with predictions revealing only half the response to turbulence of the conventional civil tiltrotor

    Unsteady separation experiments on 2-D airfoils, 3-D wings, and model helicopter rotors

    Get PDF
    Information on unsteady separation and dynamic stall is being obtained from two experimental programs that have been underway at United Technologies Research Center since 1984. The first program is designed to obtain detailed surface pressure and boundary layer condition information during high amplitude pitching oscillations of a large (17.3 in. chord) model wing in a wind tunnel. The second program involves the construction and testing of a pressure-instrumented model helicopter rotor. This presentation describes some of the results of these experiments, and in particular compares the detailed dynamic stall inception information obtained from the oscillating wing with the unsteady separation and reverse flow results measured on the retreating blade side of the model rotor during wind tunnel testing

    Shielded Reinforcement Learning for Hybrid Systems

    Get PDF
    Safe and optimal controller synthesis for switched-controlled hybrid systems, which combine differential equations and discrete changes of the system's state, is known to be intricately hard. Reinforcement learning has been leveraged to construct near-optimal controllers, but their behavior is not guaranteed to be safe, even when it is encouraged by reward engineering. One way of imposing safety to a learned controller is to use a shield, which is correct by design. However, obtaining a shield for non-linear and hybrid environments is itself intractable. In this paper, we propose the construction of a shield using the so-called barbaric method, where an approximate finite representation of an underlying partition-based two-player safety game is extracted via systematically picked samples of the true transition function. While hard safety guarantees are out of reach, we experimentally demonstrate strong statistical safety guarantees with a prototype implementation and UPPAAL STRATEGO. Furthermore, we study the impact of the synthesized shield when applied as either a pre-shield (applied before learning a controller) or a post-shield (only applied after learning a controller). We experimentally demonstrate superiority of the pre-shielding approach. We apply our technique on a range of case studies, including two industrial examples, and further study post-optimization of the post-shielding approach.Safe and optimal controller synthesis for switched-controlled hybrid systems, which combine differential equations and discrete changes of the system’s state, is known to be intricately hard. Reinforcement learning has been leveraged to construct near-optimal controllers, but their behavior is not guaranteed to be safe, even when it is encouraged by reward engineering. One way of imposing safety to a learned controller is to use a shield, which is correct by design. However, obtaining a shield for non-linear and hybrid environments is itself intractable. In this paper, we propose the construction of a shield using the so-called barbaric method, where an approximate finite representation of an underlying partition-based two-player safety game is extracted via systematically picked samples of the true transition function. While hard safety guarantees are out of reach, we experimentally demonstrate strong statistical safety guarantees with a prototype implementation and Uppaal Stratego. Furthermore, we study the impact of the synthesized shield when applied as either a pre-shield (applied before learning a controller) or a post-shield (only applied after learning a controller). We experimentally demonstrate superiority of the pre-shielding approach. We apply our technique on a range of case studies, including two industrial examples, and further study post-optimization of the post-shielding approach.</p

    Localized, Non-Harmonic Active Flap Motions for Low Frequency In-Plane Rotor Noise Reduction

    Get PDF
    A first-of-its-kind demonstration of the use of localized, non-harmonic active flap motions, for suppressing low frequency, in-plane rotor noise, is reported in this paper. Operational feasibility is verified via testing of the full-scale AATD/Sikorsky/UTRC active flap demonstration rotor in the NFAC's 40- by 80-Foot anechoic wind tunnel. Effectiveness of using localized, non-harmonic active flap motions are compared to conventional four-per-rev harmonic flap motions, and also active flap motions derived from closed-loop acoustics implementations. All three approaches resulted in approximately the same noise reductions over an in-plane three-by-three microphone array installed forward and near in-plane of the rotor in the nearfield. It is also reported that using an active flap in this localized, non-harmonic manner, resulted in no more that 2% rotor performance penalty, but had the tendency to incur higher hub vibration levels

    Health professionals' knowledge of probiotics : an international survey

    Get PDF
    The objective of this study was to survey health professionals to investigate their knowledge of probiotics. An online survey was conducted to gather data on the knowledge of health professionals. The online survey was distributed via email and social media platforms using snowball sampling. A total of 1066 health professionals (859; 80.6% female) from 30 countries responded to the survey. Most of the respondents evaluated their knowledge of probiotics as medium (36.4%) or good (36.2%). Only 8.9% of the respondents rated it as excellent. No statistical difference in knowledge was found between male and female health professionals. Over 80% of pharmacists, allied health professionals, medical doctors and dentists, and other health professionals knew the correct definition of probiotics as “live microorganisms that, when administered in adequate amounts, confer a health benefit on the host”, whereas three quarters of registered nurses and midwives and less than two thirds of psychologists identified the correct definition. Statistically, more female than male health professionals knew the correct definition of probiotics. The most frequently recognized species of bacteria containing probiotic strains were Lactobacillus acidophilus (92%), Bifidobacterium bifidum (82%), and Lactobacillus rhamnosus (62%). The opinions on when it is best to take probiotics were different (χ2 = 28.375; p < 0.001), with 90.2% of respondents identifying that probiotics have beneficial effects if taken during antibiotic therapy, 83.5% for diarrhea, 70.6% for constipation, 63.3% before traveling abroad, and 60.4% for treating allergies. Almost 79% of health professionals involved in this study have advised their patients to use probiotics and 57.5% of the respondents wanted to learn more about probiotics. All things considered, health professionals have a medium level of knowledge of probiotics, which could be improved by the implementation of targeted learning programs. As probiotics have many beneficial effects in a wide range of health areas, health professionals need to adopt the use of probiotics in clinical practice
    corecore