771 research outputs found

    Photo-induced magnetization enhancement in two-dimensional weakly anisotropic Heisenberg magnets

    Get PDF
    By comparing the photo-induced magnetization dynamics in simple layered systems we show how light-induced modifications of the magnetic anisotropy directly enhance the magnetization. It is observed that the spin precession in (CH3NH3)2CuCl4, initiated by a light pulse, increases in amplitude at the critical temperature TC. The phenomenon is related to the dependence of the critical temperature on the axial magnetic anisotropy. The present results underline the possibility and the importance of the optical modifications of the anisotropy, opening new paths toward the control of the magnetization state for ultrafast memories.Comment: 5 pages, 3 figures, supplementary info as SIr.pd

    Mapping the B,T phase diagram of frustrated metamagnet CuFeO2

    Get PDF
    The magnetic phase diagram of CuFeO2 as a function of applied magnetic field and temperature is thoroughly explored and expanded, both for magnetic fields applied parallel and perpendicular to the material's c-axis. Pulsed field magnetization measurements extend the typical magnetic staircase of CuFeO2 at various temperatures, demonstrating the persistence of the recently discovered high field metamagnetic transition up to Tn2 ~ 11 K in both field configurations. An extension of the previously introduced phenomenological spin model used to describe the high field magnetization process (Phys. Rev. B, 80, 012406 (2009)) is applied to each of the consecutive low-field commensurate spin structures, yielding a semi-quantitative simulation and intuitive description of the entire experimental magnetization process in both relevant field directions with a single set of parameters.Comment: 14 pages, 11 figures, submitted to Phys. Rev.

    High-field recovery of the undistorted triangular lattice in the frustrated metamagnet CuFeO2

    Get PDF
    Pulsed field magnetization experiments extend the typical metamagnetic staircase of CuFeO2 up to 58 T to reveal an additional first order phase transition at high field for both the parallel and perpendicular field configuration. Virtually complete isotropic behavior is retrieved only above this transition, indicating the high-field recovery of the undistorted triangular lattice. A consistent phenomenological rationalization for the field dependence and metamagnetism crossover of the system is provided, demonstrating the importance of both spin-phonon coupling and a small field-dependent easy-axis anisotropy in accurately describing the magnetization process of CuFeO2.Comment: 4 pages, 4 figure

    Coherent amplitudon generation in K_0.3MoO_3 through ultrafast inter-band quasi particle decay

    Get PDF
    The charge density wave system K_0.3MoO_3 has been studied using variable energy pump-probe spectroscopy, ellipsometry, and inelastic light scattering. The observed transient reflectivity response exhibits quite a complex behavior, containing contributions due to quasi particle excitations, coherent amplitudons and phonons, and heating effects. The generation of coherent amplitudons is discussed in terms of relaxation of photo-excited quasi particles, and is found to be resonant with the interband plasmon frequency. Two additional coherent excitations observed in the transients are assigned to zone-folding modes of the charge density wave state

    Electron-phonon and spin-phonon coupling in NaV2_{2}O5_{5}: charge fluctuations effect

    Get PDF
    We show that the asymmetric crystal environment of the V site in the ladder compound NaV2_{2}O5_{5} leads to a strong coupling of vanadium 3d electrons to phonons. This coupling causes fluctuations of the charge on the V ions, and favors a transition to a charge-ordered state at low temperatures. In the low temperature phase the charge fluctuations modulate the spin-spin superexchange interaction, resulting in a strong spin-phonon coupling.Comment: Europhysics Letters, to be publishe

    Magneto-optical readout of dark exciton distribution in cuprous oxide

    Get PDF
    An experimental study of the yellow exciton series in Cu2O in strong magnetic fields up to 32 T shows the optical activation of direct and phonon-assisted paraexciton luminescence due to mixing with the quadruple allowed orthoexciton state. The observed phonon-assisted luminescence yields information on the statistical distribution of occupied states. Additional time-resolved experiments provide a unique opportunity to directly determine the time evolution of the thermodynamical properties of the paraexciton gas. Because the lifetime of paraexciton is hardly affected by the optical activation in a strong magnetic field, this opens new possibilities for studies aiming at Bose-Einstein condensation of excitons in bulk semiconductors.Comment: 14 pages, 6 figure

    Phonon and crystal field excitations in geometrically frustrated rare earth titanates

    Get PDF
    The phonon and crystal field excitations in several rare earth titanate pyrochlores are investigated. Magnetic measurements on single crystals of Gd2Ti2O7, Tb2Ti2O7, Dy2Ti2O7 and Ho2Ti2O7 are used for characterization, while Raman spectroscopy and terahertz time domain spectroscopy are employed to probe the excitations of the materials. The lattice excitations are found to be analogous across the compounds over the whole temperature range investigated (295-4 K). The resulting full phononic characterization of the R2Ti2O7 pyrochlore structure is then used to identify crystal field excitations observed in the materials. Several crystal field excitations have been observed in Tb2Ti2O7 in Raman spectroscopy for the first time, among which all of the previously reported excitations. The presence of additional crystal field excitations, however, suggests the presence of two inequivalent Tb3+ sites in the low temperature structure. Furthermore, the crystal field level at approximately 13 cm-1 is found to be both Raman and dipole active, indicating broken inversion symmetry in the system and thus undermining its current symmetry interpretation. In addition, evidence is found for a significant crystal field-phonon coupling in Tb2Ti2O7. These findings call for a careful reassessment of the low temperature structure of Tb2Ti2O7, which may serve to improve its theoretical understanding.Comment: 13 pages, 7 figure

    Decay and coherence of two-photon excited yellow ortho-excitons in Cu2O

    Get PDF
    Photoluminescence excitation spectroscopy has revealed a novel, highly efficient two-photon excitation method to produce a cold, uniformly distributed high density excitonic gas in bulk cuprous oxide. A study of the time evolution of the density, temperature and chemical potential of the exciton gas shows that the so called quantum saturation effect that prevents Bose-Einstein condensation of the ortho-exciton gas originates from an unfavorable ratio between the cooling and recombination rates. Oscillations observed in the temporal decay of the ortho-excitonic luminescence intensity are discussed in terms of polaritonic beating. We present the semiclassical description of polaritonic oscillations in linear and non-linear optical processes.Comment: 14 pages, 12 figure

    Biological removal processes in aerobic granular sludge exposed to diclofenac

    Get PDF
    Diclofenac is a worldwide consumed drug included in the watch list of substances to be monitored according to the European Union Water Framework Directive (Directive 2013/39/EU). Aerobic granular sludge sequencing batch reactors (AGS-SBR) are increasingly used for wastewater treatment but there is scant information on the fate and effect of micropollutants to nutrient removal processes. An AGS-SBR fed with synthetic wastewater containing diclofenac was bioaugmented with a diclofenac degrading bacterial strain and performance and microbial community dynamics was analysed. Chemical oxygen demand, phosphate and ammonia removal were not affected by the micropollutant at 0.03 mM (9.54 mg L-1). The AGS was able to retain the degrading strain, which was detected in the sludge throughout after augmentation. Nevertheless, besides some adsorption to the biomass, diclofenac was not degraded by the augmented sludge given the short operating cycles and even if batch degradation assays confirmed that the bioaugmented AGS was able to biodegrade the compound. The exposure to the pharmaceutical affected the microbial community of the sludge, separating the two first phases of reactor operation (acclimatization and granulation) from subsequent phases. The AGS was able to keep the bioaugmented strain and to maintain the main functions of nutrient removal even through the long exposure to the pharmaceutical, but combined strategies are needed to reduce the spread of micropollutants in the environment.info:eu-repo/semantics/acceptedVersio
    • …
    corecore