296 research outputs found
Sequential Quantum Teleportation of Optical Coherent States
We demonstrate a sequence of two quantum teleportations of optical coherent
states, combining two high-fidelity teleporters for continuous variables. In
our experiment, the individual teleportation fidelities are evaluated as F_1 =
0.70 \pm 0.02 and F_2 = 0.75 \pm 0.02, while the fidelity between the input and
the sequentially teleported states is determined as F^{(2)} = 0.57 \pm 0.02.
This still exceeds the optimal fidelity of one half for classical teleportation
of arbitrary coherent states and almost attains the value of the first
(unsequential) quantum teleportation experiment with optical coherent states.Comment: 5page, 4figure
Quantum versus classical domains for teleportation with continuous variables
By considering the utilization of a classical channel without quantum entanglement, fidelity Fclassical=1/2 has been established as setting the boundary between classical and quantum domains in the teleportation of coherent states of the electromagnetic field [S. L. Braunstein, C. A. Fuchs, and H. J. Kimble, J. Mod. Opt. 47, 267 (2000)]. We further examine the quantum-classical boundary by investigating questions of entanglement and Bell-inequality violations for the Einstein-Podolsky-Rosen states relevant to continuous variable teleportation. The threshold fidelity for employing entanglement as a quantum resource in teleportation of coherent states is again found to be Fclassical=1/2. Likewise, violations of local realism onset at this same threshold, with the added requirement of overall efficiency η>2/3 in the unconditional case. By contrast, recently proposed criteria adapted from the literature on quantum-nondemolition detection are shown to be largely unrelated to the questions of entanglement and Bell-inequality violations
Hybrid quantum information processing
The development of quantum information processing has traditionally followed
two separate and not immediately connected lines of study. The main line has
focused on the implementation of quantum bit (qubit) based protocols whereas
the other line has been devoted to implementations based on high-dimensional
Gaussian states (such as coherent and squeezed states). The separation has been
driven by the experimental difficulty in interconnecting the standard
technologies of the two lines. However, in recent years, there has been a
significant experimental progress in refining and connecting the technologies
of the two fields which has resulted in the development and experimental
realization of numerous new hybrid protocols. In this Review, we summarize
these recent efforts on hybridizing the two types of schemes based on discrete
and continuous variables.Comment: 13 pages, 6 figure
Experiment towards continuous-variable entanglement swapping: Highly correlated four-partite quantum state
We present a protocol for performing entanglement swapping with intense
pulsed beams. In a first step, the generation of amplitude correlations between
two systems that have never interacted directly is demonstrated. This is
verified in direct detection with electronic modulation of the detected
photocurrents. The measured correlations are better than expected from a
classical reconstruction scheme. In the entanglement swapping process, a
four--partite entangled state is generated. We prove experimentally that the
amplitudes of the four optical modes are quantum correlated 3 dB below shot
noise, which is due to the potential four--party entanglement.Comment: 9 pages, 10 figures, update of references 9 and 10; minor
inconsistency in notation removed; format for units in the figures change
Entanglement, Purity, and Information Entropies in Continuous Variable Systems
Quantum entanglement of pure states of a bipartite system is defined as the
amount of local or marginal ({\em i.e.}referring to the subsystems) entropy.
For mixed states this identification vanishes, since the global loss of
information about the state makes it impossible to distinguish between quantum
and classical correlations. Here we show how the joint knowledge of the global
and marginal degrees of information of a quantum state, quantified by the
purities or in general by information entropies, provides an accurate
characterization of its entanglement. In particular, for Gaussian states of
continuous variable systems, we classify the entanglement of two--mode states
according to their degree of total and partial mixedness, comparing the
different roles played by the purity and the generalized entropies in
quantifying the mixedness and bounding the entanglement. We prove the existence
of strict upper and lower bounds on the entanglement and the existence of
extremally (maximally and minimally) entangled states at fixed global and
marginal degrees of information. This results allow for a powerful, operative
method to measure mixed-state entanglement without the full tomographic
reconstruction of the state. Finally, we briefly discuss the ongoing extension
of our analysis to the quantification of multipartite entanglement in highly
symmetric Gaussian states of arbitrary -mode partitions.Comment: 16 pages, 5 low-res figures, OSID style. Presented at the
International Conference ``Entanglement, Information and Noise'', Krzyzowa,
Poland, June 14--20, 200
- âŠ