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Research in quantum information processing
has followed two different directions: the use
of discrete variables (qubits) and that of high-
dimensional, continuous-variable Gaussian states
(coherent and squeezed states). Recently, these
two approaches have been converging in poten-
tially more powerful hybrid protocols.

I. INTRODUCTION

By harnessing quantum superposition and entangle-
ment, it is possible to design new, and potentially more
powerful, types of communication and computation. But
despite the significant experimental progress in control-
ling the quantum states of various microscopic systems,
the implementation of a fully fault-tolerant and scalable
quantum computer is still a major challenge.

Many physical platforms, including photons, ions,
atoms, solid state and superconducting devices and nu-
clear magnetic resonance [1], are being explored in the
view of constructing a quantum computer. But, irre-
spective of the physical implementation, quantum infor-
mation processing (QIP) comes in two different types de-
pending on the degree of freedom, or observable, used
to encode information. If the observable is discrete in
nature (that is, its eigenvalues are discretized), we talk
about discrete-variable (DV) QIP [2], see Box 1. And if
the observable has a continuum of eigenvalues, we refer
to continuous-variable (CV) QIP [3–5], see Box 2. This is
in a way similar to classical information processing where
the two types of encoding are known as digital and analog
information processing.

Recently, progress has been made towards bridging the
two approaches with the aim of realizing protocols that
overcome the intrinsic individual limitations. The inte-
gration of DV and CV technologies in unified hybrid sys-
tems (by which we mean the simultaneous use of discrete
and continuous variables as opposed to hybrid physical
systems) has advanced both theoretically and experimen-
tally and the aim of this Progress Article is to highlight
some of these results.

∗Corresponding author:ulrik.andersen@fysik.dtu.dk

II. GENERATION OF NON-GAUSSIAN STATES

A prerequisite for universal QIP is the generation of
a restricted set of quantum states. Some systems pos-
sess only a DV description of their quantum state which
is for instance the case for the spin of a single parti-
cle. However, for most systems, including the broad
category of harmonic oscillators, a CV description ex-
ists. Among them there are two classes of pure quantum
states that play a pivotal role in QIP: Gaussian and non-
Gaussian states, referring to the statistics of the state’s
wavefunction or Wigner function. Gaussian states are
relatively easy to produce and manipulate using standard
optical technology such as lasers, parametric amplifiers
(or squeezers), beam splitters and homodyne detectors.
This enables linear transformations of continuous quan-
tum quadratures, thereby mapping Gaussian states onto
other Gaussian states.

In recent years, this technology has been extended to
the microwave regime. Using superconducting degener-
ate [6] and non-degenerate [7] parametric amplifiers, mi-
crowave squeezed and CV entangled states have been
generated and characterized with homodyne detection
for state tomography. In addition to the generation of
squeezing of the field quadratures, demonstrations of the
squeezing of the CV collective spin observables of an
atomic ensemble [8] have been reported and similar pro-
posals exist for solid state materials [9, 10]. In the last
decade, there has been significant interest in the gener-
ation and manipulation of the position and momentum
CV states of mechanical oscillators. This has lead to
numerous proposals and a single experiment on generat-
ing mechanically squeezed and entangled states exploit-
ing the Gaussian coupling between a field mode and the
mechanics [11, 12].

To produce a pure non-Gaussian state or, in general,
an arbitrary quantum state, the standard CV toolbox
consisting of linear Gaussian transformation and homo-
dyne detection is insufficient. It is however possible to
enter the non-Gaussian regime by hybridizing DV and
CV technologies. There are basically two approaches to
the formation of non-Gaussian states of an oscillator: 1)
by enabling a strong, deterministic coupling to a finite-
level (discretized) matter system or 2) by a probabilistic
measurement-induced interaction using a finite-level dis-
cretized energy detector (photon counter).
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Box 1 Discrete variables
Binary digits of information can be represented by or-
thogonal eigenstates of observables of a single quantum
system such as the polarization of a photon ((a) in the
figure below), the spin of an electron (b) or the current
of a superconducting loop (c). In QIP, one can also use
superpositions of eigenstates:

|ψ〉 = c0|0〉 + c1|1〉 (1)

The information encoded in this quantum state is given
by the complex amplitudes c0 and c1, and it can be rep-
resented and visualized on the Bloch sphere (d). The
computational basis set {|0〉, |1〉} is discrete. A projective
measurement is described by a two-component projector
such that in each measurement the number of outcomes
(eigenvalues) is two. Physically such measurements are
realized for example by a Stokes parameter (polarization)
measurement (e) or a Stern-Gerlach apparatus, both of
which ideally project along any orthogonal basis. A uni-
versal two-component projector can be used to implement
a measurement-induced non-linearity and it can be used
to fully characterize a state in the two-dimensional Hilbert
space.
Universal quantum computation requires the implemen-
tation of a finite set of gates comprising single qubit and
two-qubit operations. One example of a complete set
is {ÛH , ÛPG, ÛCNOT } where ÛH and ÛPG are the sin-
gle qubit Hadamard and rotation gates, respectively, and
ÛCNOT is the two qubit controlled NOT gate. For some
physical systems, these gates are relatively simple to im-
plement. For others, such as optics, particularly the two-
mode gate is challenging.
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Deterministic generation of non-Gaussian states

The interaction between a CV oscillator and a DV two-
level system can be described by the Jaynes-Cummings
interaction. The simplest non-Gaussian state produced
by this interaction is the single photon state; each time
the two-level system is excited, it will decay and emit
a single flying photon into a travelling field mode. If
a single field mode is strongly coupled to the two-level

Box 2 Continuous variables
As an alternative to the standard finite-level encoding,
one can use the eigenstates {|x〉} of a continuous-valued
operator x̂. This operator and its conjugate, p̂, could be
represented by the amplitude and phase quadratures of
a field mode ((a) in the figure below), the collective spin
variables of an atomic ensemble (b) or the position and
momentum of a mechanical oscillator (c). An arbitrary
quantum state in this basis is

|ψ〉 =

∫ ∞
−∞

ψ(x)|x〉dx (2)

where the information is now encoded in the wavefunc-
tion ψ(x) or, more generally, in a quasi-distribution over
phase space known as the Wigner function W (x, p) (d).
Traditional CV QIP uses Gaussian states such as coherent,
squeezed and Einstein-Podolsky-Rosen entangled states
(also known as two-mode squeezed states) – these have
Gaussian wavefunctions and Wigner functions.
A measurement of the basis states is done with a contin-
uous projector which for optical and microwave fields can
be implemented with a homodyne detector (e) and for an
atomic ensemble by the Faraday polarization rotation of
light that is proportional to the collective spin. With a set
of such measurements, it is possible to perform a complete
tomography of any quantum state.
One universal set of gates for CV computation is
{ÛF , ÛZ , ÛPG, ÛSUM} with the single-mode Gaussian

gates ÛF (Fourier transform) and ÛZ (displacement), the

single-mode non-Gaussian cubic phase gate ÛPG, and the
two-mode Gaussian SUM gate ÛSUM . Whereas the Gaus-
sian transformations typically are easy to implement in a
CV system, universality is only attained by including the
technically challenging non-Gaussian transformations.
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system – usually enabled by placing the systems inside
a high Q cavity – the photon will be harvested by that
mode with high probability. It has been demonstrated
in a number of experiments [13], but a complete state
characterization via Wigner function reconstruction has
been realized only in a few experiments, mainly in the
microwave regime [14–16], but recently also in the optical
regime with atomic ensembles [17].
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In the microwave domain, extremely high coupling
strength can be reached using a superconducting phase
qubit near a microstrip cavity. Furthermore, the cou-
pling can be controlled by detuning the cavity in and
out of resonance with the field [18]. Using such a strong
and controlled coupling, higher order Fock states [19] as
well as Fock state superpositions of several photons [20]
have been deterministically generated and characterized
by quantum state tomography on a chip in a cryogenic
environment. Similar multi-photon Fock states have been
generated via quantum non-demolition measurement of a
stationary microwave field employing the strong coupling
and subsequent measurements of flying Rydberg atoms
[14], see Fig. 1a.

Another non-Gaussian state of the harmonic oscilla-
tor is the so-called Schrödinger cat state which is defined
as superpositions of coherent states with opposite phase,
|α〉 ± | − α〉 [21] where α is the coherent state ampli-
tude. Such states have been deterministically realized in
the motional state of a trapped ion through the applica-
tion of a sequence of Raman laser pulses and the inter-
action with its spin degree of freedom [22]. Cat states
have also been generated by entangling a standing CV
microwave field to a flying Rydberg atom followed by
a projective DV measurement of the atom [14, 23] and
through a strong, dispersive interaction with a supercon-
ducting transmon qubit [24]. In the latter experiment,
impressive cat sizes of up to 111 photons were created,
and the complexity was further enhanced by producing
three- and four-component cat states, see Fig. 1b.

In addition to the coupling of two-level systems to the
CVs of the electro-magnetic field and the vibrational
mode of ions, recently there has also been significant
progress in understanding and implementing the coupling
of a two-level system to the continuous position and mo-
mentum variables of a solid mechanical oscillator. In
a pioneering experiment it was shown that by strongly
coupling a superconducting phase qubit to a ground state
cooled mechanical oscillator, it was possible to coherently
read out the state of the oscillator and, furthermore, to
generate a single excitation (single phonon Fock state) of
the oscillator [25], see Fig. 1c. Various other approaches
enabling a strong coupling of a two-level system (e.g. a
quantum dot [26], an NV center in diamond [27], an atom
[28] and a two-level defect [29]) to a mechanical oscil-
lator have been proposed and some recent preliminary
steps have been realized [30, 31]. These schemes promise
the creation of arbitrary superposition states including
the cat state, which in principle can be mapped onto the
electromagnetic field [32]. This might well be the future
route to determinisitic generation of non-Gaussian states
for QIP.

Probabilistic generation of non-Gaussian states

Even without a deterministic coupling to a discrete
level system, it is possible to probabilistically do intricate

modifications at the individual quantum level of the state
of a harmonic oscillator. Such transformations, which are
in general non-Gaussian, can be implemented through
projective measurements of a discrete spectrum opera-
tor. This approach is very common, particularly in the
optical domain where low-noise single photon detectors
are readily available.

Negative Wigner functions of an optical field mode
were first observed for a single photon conditionally pre-
pared by the detection its twin from a photon pair created
in a spontaneous parametric down-conversion (SPDC)
process in a nonlinear crystal [33]. The same method
was used to implement the addition of a photon to a
coherent state that was seeded into one mode of the
SPDC [34]. The reverse of this photon addition process,
photon subtraction, can be easily implemented by detec-
tion of a photon after a weakly reflecting beamsplitter
as was demonstrated in several experiments where the
subtraction was applied to an initial squeezed vacuum
state [35–38]. Interest in this particular state arose from
the recognition [39] that such states are close-to-ideal ap-
proximations to Schrödinger cat states with small ampli-
tudes α, also known as kitten states.

The range of possible conditional operations can be ex-
panded by detecting additional photons (with either mul-
tiple or photon-number-resolving detectors) as shown for
higher-number Fock states [40, 41] and kitten states [42–
44]. It can be expanded even further by preceding the
photon detection by a phase space displacement. This
changes the simple Fock state projection into a projection
consisting of a superposition of multiple photon num-
ber components whose coefficients are controlled by the
amplitude and phase of the displacement, see Fig. 1d.
Applications include generation of arbitrary superposi-
tions of vacuum and a single [45–47] or multiple pho-
tons [48, 49] and kitten state superpositions [50]. Com-
plex quantum states can alternatively be created by a dif-
ferent probabilistic hybrid technique, namely conditional
homodyne detection on already prepared non-Gaussian
states [51, 52], see Fig. 1e.

The application of these operations are not limited to
single mode light fields. By using phase-space displace-
ment or non-local photon subtraction or addition on var-
ious initial two-mode states, different kinds of entangled,
non-Gaussian states such as nonlocal kittens [53] and hy-
brid CV/DV entangled states [54–56] have also been gen-
erated.

Finally, projective photon number measurements can
also induce non-Gaussian states of CV material systems
when applied to scattered light. This has been proposed
for massive mechanical oscillators [57, 58] and experimen-
tally demonstrated for atomic spin ensembles [59, 60],
even with negative Wigner functions [61], see Fig. 1f.
Many of the techniques outlined above that have been de-
veloped for purely optical implementations could equiv-
alently be applied to prepare highly interesting states of
material systems.
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FIG. 1: Examples of non-Gaussian state generation in various systems. a) Schrödinger cat and Fock states of a microwave
cavity field induced by the detection of dispersively coupled Rydberg atoms [14], b) 3- and 4-component cat states of a
microwave cavity field coupled to a superconducting transmon qubit [24], c) population exchange of a single excitation between
a superconducting phase qubit and a piezoelectric mechanical oscillator cooled to its ground state [25], d) arbitrary Fock
state superpositions of an optical mode through spontaneous parametric down-conversion and coherent-state injected photon
detectors [48], e) squeezed Schrödinger cat state of an optical mode induced by conditional homodyne detection on a 2-photon
Fock state [52], f) a single excitation of the collective spin state of 3000 atoms heralded by detection of a single photon that
has interacted with the atomic ensemble [61].

III. HYBRID PROTOCOLS

Let us discuss a few examples of ways in which QIP
could make use of these hybrid techniques. Applications
include the fundamental tasks such as quantum telepor-
tation, entanglement distillation, error correction or test-
ing Bell inequalities. Ultimately, these techniques could
enable the realization of scalable quantum communica-
tion and universal, fault-tolerant quantum computation.

Hybrid quantum teleportation

The elementary quantum communication protocol is
quantum teleportation [62] – the transfer of arbitrary
quantum states using shared entanglement and classical
communication; and the most obvious hybrid approach
to quantum teleportation is CV quantum teleportation

[63] of DV states or DV quantum teleportation of CV
states. In the optical domain, the former can be, in
principle, straightforwardly applied upon any quantum
states including single-photon-based qubits. This tele-
porter possesses the great advantage of being determin-
istic while using solely linear components. However, the
price to pay is the intrinsically limited performance: per-
fectly faithful and deterministic teleportation of an arbi-
trary state can only be attained in the limit of an un-
physical, infinite degree of Gaussian entanglement. De-
terministic CV teleportation of DV states has recently
been demonstrated on photonic qubits [64] and also for
a cat state [65].

The converse quantum teleporter, using DV entangle-
ment and DV operations to transfer a CV state, requires
breaking up a high-dimensional CV state into states of
smaller dimension and performing correspondingly many
individual DV teleportations [66]. In contrast to the
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standard CV teleporter, the optical DV teleporter can
reach fidelities of 100%. However, its efficiency is funda-
mentally limited by the probabilistic nature of qubit Bell
measurements with linear transformations [67]. Only by
the use of nonlinear, non-Gaussian transformations or ad-
ditional non-Gaussian ancillary states can the teleporter
become (near-)deterministic. We note that the efficiency
of the Bell measurement can however be made more effi-
cient using – once again – a hybrid approach where the
states undergo a CV squeezing transformation prior to
DV photon counting measurements [68].

Quantum teleportation nicely illustrates what an op-
tical hybrid approach does: it can exchange an other-
wise probabilistic, linear-optical qubit teleporter with a
fully deterministic device, possibly at the expense of the
transfer fidelity; and it can make use of a potentially high-
fidelity transfer of a CV state, at the expense of a non-
unit success probability. This new level of versatility is,
of course, even greater when matter systems are included,
as the light-matter interactions offer an alternative way
of performing efficient Bell measurements. In fact, us-
ing atomic ensembles or two-level emitters, such hybrid
light-matter teleportations have been already proposed
for long-distance quantum communication [69] and, on a
small scale, experimentally demonstrated [70, 71].

Hybrid entanglement distillation

For quantum communication based upon the distribu-
tion of entangled states, like in a quantum repeater, it is
desirable to initially prepare and distribute optical entan-
glement with high efficiency. Since the CV Gaussian en-
tangled states can be produced in an unconditional fash-
ion, they may serve as a deterministic source of shared
entanglement. However, Gaussian entanglement is very
sensitive to photon losses and hence entanglement dis-
tillation will be absolutely necessary. Solely using CV
Gaussian operations does not allow for distilling high-
quality Gaussian entanglement from low-quality, noisy
Gaussian entanglement [72–74], but by introducing local
non-Gaussian elements such as photon subtraction (via
photon counting) the entanglement of the state can be
effectively enhanced [75–78] and the process can be fur-
ther improved using squeezing, displacements and atomic
memories [79–82]. Another prominent method for CV
entanglement distillation and error correction is the her-
alded, noiseless linear amplifier (NLA) [83, 84] which has
been realized in different settings [85–88].

All these methods involve the distillation of CV Gaus-
sian entanglement using DV measurements. The reverse
scenario, that is detecting errors of DV states using CV
homodyne measurements has been proposed in the case
of cat state purification [89, 90] and distillation of lossy
DV Bell states [91]. The latter scheme is effectively im-
plementing the NLA by means of homodyne measure-
ments and classical data filtering. Moreover, homodyne
detection can also facilitate the production of DV entan-

glement between a pair of atoms: Exploiting a dispersive
Jaynes-Cummings type of interaction, a bright coherent
state can get entangled with two atoms at two different
locations, which in turn can be measured with a homo-
dyne detector to herald an atom-atom entangled state at
a distance with a relatively high rate [92]. An alternative
approach to the formation of atom-atom entanglement,
but also using homodyne detection, is to employ a CV
Bell measurement and continuous feedback to perform
an entanglement swap experiment of DV atomic qubits
[93].

Hybrid quantum computing

Examples of gates leading to universal quantum com-
puting for DV and CV logical encoding are given in Box
1 and 2, and these approaches might benefit from hy-
bridization. E.g. the non-Gaussian single mode cubic
phase gate required for CV computing can be realized by
introducing DV projectors and conditional squeezing op-
erations [94–96]. The alternative to circuit based quan-
tum computing is the measurement-based approach ex-
ploiting entangled cluster states [97, 98]. This also bene-
fits from hybridization where Gaussian cluster states per-
form the computation via DV non-Gaussian projectors
(see Fig. 2). In contrast to CV quantum computing, the
two-mode gate for DV quantum computing based on light
is difficult to realize deterministically. Measurement in-
duced approaches to the CNOT gate tend to suffer from
the massive overhead requirements, and the deterministic
schemes based on giant material nonlinearities are very
challenging although important progress are being made
[99]. However, it has been shown theoretically that by
combining a relatively weak cross-Kerr nonlinearity with
a CV homodyne measurement, it is possible to realize a
quantum non-demolition measurement which in turn can
be used to implement a near-deterministic DV CNOT
gate with much fewer resources than would be otherwise
possible [100, 101].

There is yet another approach to hybrid quantum com-
puting in which the quantum information itself is a hy-
brid between DV and CV. Here the information is en-
coded in a macroscopic qubit consisting of a discrete
superposition of CV coherent states - a cat state as
introduced in Section II. Universal quantum computa-
tion can be executed using a measurement induced ap-
proach where gates are implemented through teleporta-
tion [102, 103] and different gates are realized by the us-
age of different types of entangled states [104, 105]. Such
a teleportation circuit operating on a set of binary coher-
ent states was recently demonstrated [106]. A simplified
but highly probabilistic approach has also been put for-
ward [107] and proof-of-principle implementations of the
Hadamard [108] as well as the phase-shift gate [109] have
been realized. All these experiments on cat state com-
puting were performed in the optical regime but could
potentially also be realized in the microwave regime with
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high fidelity or on phononic modes of mechanical oscilla-
tors or ions. Some of the complications of the cat state
protocol can be circumvented by encoding the informa-
tion in a hybrid DV/CV entangled cat state [110]. More-
over, by extending the cat qubit to include four different
coherent state phases, the qubit becomes more robust
against losses [111, 112]; and a universal set of gates can
be realized by tailoring a specific Hamiltonian using cir-
cuit QED [113].

Hybrid Bell tests

The falsification of hidden local variable theories [114]
through the violation of Bell’s inequality has so far been
hampered by the difficulty in measuring entangled states
distributed over large distances with high efficiency. A
solution could be the use of a hybrid detection strategy
alternating between a DV photon counting measurement
and a CV homodyne measurement [115]. The benefit
would arise from the near-ideal detection efficiency of the
homodyne detector which reduces the requirement on the
transmission and photon counting efficiencies. However,
there seems to be a trade-off between the required effi-
ciencies and the complexity of the entangled state gen-
eration. For instance, the photon counting efficiency can
be very low for a highly complex state [116] while be-
ing challengingly high for an easily produceable W state
[117, 118]. As an alternative, it is possible to a make an
asymmetric Bell test that involves atom-photon entan-
glement and hybrid photonic measurements [119, 120].
As the atom can be detected with near-ideal efficiency,
the efficiency-threshold for the DV photonic measure-
ment can be fairly low and can again be traded against
a higher complexity in state generation. Finally we note
that by using an entangled cat state it is possible to vi-
olate Bell’s inequality with purely CV homodyne mea-
surements albeit under some experimentally challenging
conditions [121].

IV. OUTLOOK

Until recently, the boundary between DV and CV QIP
platforms has been quite sharp. This is no longer the
case thanks to recent advances in combining the tech-
nologies of the two approaches which has led to theoret-
ical proposals and experimental implementations of new
promising QIP protocols. Most of the demonstrations
to date are proof-of-principle experiments lacking high-
fidelity operation, efficiency and scalability. To advance
the field a deeper understanding of the present limita-
tions is needed. Still, the field is very young, and we
might have only scratched the surface of a much larger
and richer field.

physical modes

quantum/classical information

Gaussian
detector

non-Gaussian
detector

Gaussian
state

non-Gaussian
state

arbitrary
state

FIG. 2: Measurement-based quantum computation using two-
dimensional lattices corresponding to offline-prepared, multi-
mode cluster states. The lattices are built from single-mode
states through Gaussian two-mode interactions (squeezers
and beam splitter-like operations; thick red lines). Arbitrary
multi-mode states (figure: three modes; vertically oriented
input and output modes in gold) can be processed by in-
dividually measuring all the modes (thin grey lines) except
for the output and feedforwarding the measurement results.
Quantum and classical (feedforward) information evolve from
left to right. Top: some of the Gaussian squeezed single-mode
states (red) of the cluster are replaced by non-Gaussian single-
mode states (blue); all measurements are Gaussian homodyne
detections (red). Bottom: some of the Gaussian detectors
(red) are replaced by non-Gaussian detectors (e.g. photon
counters; blue); all initial single-mode states are Gaussian
squeezed states (red), and hence the entire cluster state is
Gaussian. Universal operations, i.e., arbitrary output states,
can be achieved either way, through CV measurements on
non-Gaussian states or arbitrary measurements on Gaussian
states. For arbitrarily long computations, the accumulation
of errors caused e.g. by finite squeezing must be suppressed
via some form of quantum error correction.
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