12,344 research outputs found
Error-resilient performance of Dirac video codec over packet-erasure channel
Video transmission over the wireless or wired network requires error-resilient mechanism since compressed video bitstreams are sensitive to transmission errors because of the use of predictive coding and variable length coding. This paper investigates the performance of a simple and low complexity error-resilient coding scheme which combines source and channel coding to protect compressed bitstream of wavelet-based Dirac video codec in the packet-erasure channel. By partitioning the wavelet transform coefficients of the motion-compensated residual frame into groups and independently processing each group using arithmetic and Forward Error Correction (FEC) coding, Dirac could achieves the robustness to transmission errors by giving the video quality which is gracefully decreasing over a range of packet loss rates up to 30% when compared with conventional FEC only methods. Simulation results also show that the proposed scheme using multiple partitions can achieve up to 10 dB PSNR gain over its existing un-partitioned format. This paper also investigates the error-resilient performance of the proposed scheme in comparison with H.264 over packet-erasure channel
Enabling error-resilient internet broadcasting using motion compensated spatial partitioning and packet FEC for the dirac video codec
Video transmission over the wireless or wired
network require protection from channel errors since compressed video bitstreams are very sensitive to transmission errors because of the use of predictive coding and variable length coding. In this paper, a simple, low complexity and patent free error-resilient coding is proposed. It is based upon the idea of using spatial partitioning on the motion compensated residual frame without employing the transform coefficient coding. The proposed scheme is intended for open source Dirac video codec in order to enable the codec to be used for Internet
broadcasting. By partitioning the wavelet transform coefficients of the motion compensated residual frame into groups and independently processing each group using arithmetic coding and Forward Error Correction (FEC), robustness to transmission errors over the packet erasure
wired network could be achieved. Using the Rate
Compatibles Punctured Code (RCPC) and Turbo Code
(TC) as the FEC, the proposed technique provides
gracefully decreasing perceptual quality over packet loss rates up to 30%. The PSNR performance is much better when compared with the conventional data partitioning only methods. Simulation results show that the use of multiple
partitioning of wavelet coefficient in Dirac can achieve up to 8 dB PSNR gain over its existing un-partitioned method
Evolutionary strategy search algorithm for fast block motion estimation
The evolutionary strategy search (ESS) algorithm is a novel method for implementing fast block motion estimation (ME) using evolutionary
strategy (ES). ESS uses a combination of ideas based on existing search strategies and employs a novel (1þsl) ES implementation. It is essentially a succession of random searches, but by controlling the placement and distribution of these searches in a simple way, it proves
possible to achieve comparable motion vector accuracy to the more established ME strategies, but with enhanced convergence speed
Semi-hierarchical based motion estimation algorithm for the dirac video encoder
Having fast and efficient motion estimation is crucial in today’s advance video compression
technique since it determines the compression efficiency and the complexity of a video encoder. In this paper, a method which we call semi-hierarchical motion estimation is proposed for the Dirac video encoder. By considering the fully hierarchical motion estimation only for a certain type of inter frame encoding, complexity
of the motion estimation can be greatly reduced while maintaining the desirable accuracy. The experimental results show that the proposed algorithm gives two to three times reduction in terms of the number of SAD calculation compared with existing motion estimation algorithm of Dirac for the same motion estimation
accuracy, compression efficiency and PSNR performance. Moreover, depending upon the complexity of the test sequence, the proposed algorithm has the ability to increase or decrease the search range in order to maintain the accuracy of the motion estimation to a certain level
Monitoring data in R with the lumberjack package
Monitoring data while it is processed and transformed can yield detailed
insight into the dynamics of a (running) production system. The lumberjack
package is a lightweight package allowing users to follow how an R object is
transformed as it is manipulated by R code. The package abstracts all logging
code from the user, who only needs to specify which objects are logged and what
information should be logged. A few default loggers are included with the
package but the package is extensible through user-defined logger objects.Comment: Accepted for publication in the Journal of Statistical Softwar
Measuring Competences in School-leaver Surveys
The measurement of competences is a relatively new topic in the economic science. In the past, economists have usually measured worker competences by educational background, tenure, or other simple quantifiable indicators. In the transition from the industrial to the knowledge economy, however, this classical approach has become rather unsatisfactory. Individual labour market performance is no longer dependent on just the individual’s initial education, since todays labour market requires continuous learning and development throughout the career. Employability has become a key concept in the knowledge economy, and the traditional lifetime employment career in a single firm has been replaced by what has been termed the protean career (Hall and Moss, 1998). In such a career, the person, not the firm, is the managing agent. In order to measure or predict career success, uni-dimensional indicators such as educational background that economists have used in the past are no longer sufficient. In the modern economy, skills and knowledge are the main factors in production, and the measurement of competences is a logical step in determining and predicting individual labour market success more accurately and reliably.education, training and the labour market;
Analysis of cyclic delay diversity on DVB-H systems over spatially correlated channel
The objective of this work is to research and analyze the performance of Cyclic Delay Diversity (CDD) with two transmit antenna on DVB-H systems operating in spatially correlated channel. It is shown in this paper that CDD can achieve desirable transmit diversity gain over uncorrelated channel with or without receiver diversity. However, in reality, the respective signal paths between spatially separated antennas and the mobile receiver is likely to be correlated because of insufficient antenna separation at the transmitter and the lack of scattering effect of the channel. Under this spatially correlated channel, it is apparent that CDD cannot achieve the same diversity gain as obtained under the uncorrelated channel. In this paper, a new upper bound on the pairwise error probability (PEP) of the CDD with spatial correlation of two transmit antennas is derived. The upper bound is used to study the CDD theoretical error performance and diversity gain losses over a generalized spatially correlated Rayleigh channel. This theoretical analysis is validated by the simulation of DVB-H systems with two transmit antennas and the CDD scheme. Both the theoretical and simulated results give the valuable insight that the CDD ability to perform well with a certain amount of channel correlation
Distributed video coding in wireless multimedia sensor network for multimedia broadcasting
Recently the development of Distributed Video Coding (DVC) has provided the promising theory
support to realize the infrastructure of Wireless Multimedia Sensor Network (WMSN), which composed of autonomous hardware for capturing and transmission of quality audio-visual content. The implementation of DVC in WMSN can better solve the problem of energy constraint of the sensor nodes due to the benefit of lower computational encoder in DVC. In this paper, a practical DVC scheme, pixel-domain Wyner-Ziv(PDWZ) video
coding, with slice structure and adaptive rate selection(ARS) is proposed to solve the certain problems when applying DVC into WMSN. Firstly, the proposed slice structure in PDWZ has extended the feasibility of PDWZ to work with any interleaver size used in Slepian-wolf turbo codec for heterogeneous applications. Meanwhile,
based on the slice structure, an adaptive code rate selection has been proposed aiming at reduce the system delay occurred in feedback request. The simulation results clearly showed the enhancement in R-D performance and perceptual quality. It also can be observed that system delay caused by frequent feedback is greatly reduced, which gives a promising support for WMSN with low latency and facilitates the QoS management
- …
