3 research outputs found

    Pollen Sterility—A Promising Approach to Gene Confinement and Breeding for Genetically Modified Bioenergy Crops

    Get PDF
    Advanced genetic and biotechnology tools will be required to realize the full potential of food and bioenergy crops. Given current regulatory concerns, many transgenic traits might never be deregulated for commercial release without a robust gene confinement strategy in place. The potential for transgene flow from genetically modified (GM) crops is widely known. Pollen-mediated transfer is a major component of gene flow in flowering plants and therefore a potential avenue for the escape of transgenes from GM crops. One approach for preventing and/or mitigating transgene flow is the production of trait linked pollen sterility. To evaluate the feasibility of generating pollen sterility lines for gene confinement and breeding purposes we tested the utility of a promoter (Zm13Pro) from a maize pollen-specific gene (Zm13) for driving expression of the reporter gene GUS and the cytotoxic gene barnase in transgenic rice (Oryza sativa ssp. Japonica cv. Nipponbare) as a monocot proxy for bioenergy grasses. This study demonstrates that the Zm13 promoter can drive pollen-specific expression in stably transformed rice and may be useful for gametophytic transgene confinement and breeding strategies by pollen sterility in food and bioenergy crops

    Biolistic DNA Delivery in Turfgrass Embryonic Callus Initiated from Mature Seeds

    No full text
    We describe a protocol for the establishment and preparation of creeping bentgrass (Agrostis stolonifera L.) cultivar “Penn A-4” embryonic calli, biolistic transformation, selection, and regeneration of transgenic plants. The embryonic callus is initiated from mature seeds, maintained by visual selection under the dissecting microscope and subjected to bombardment with plasmid DNA containing a bialaphos-resistance (bar) gene. PCR, Southern, and Northern blot analyses are used to confirm the transgene integration and expression

    A Changing Environment: 2016 NCSBN Environmental Scan

    No full text
    corecore