159 research outputs found

    Direct evidence of a blocking heavy atom effect on the water-assisted fluorescence enhancement detection of HgĀ²āŗ based on a ratiometric chemosensor

    Get PDF
    At the current stage of chemosensor chemistry, the critical question now is whether the heavy atom effect caused by HTM ions can be blocked or avoided. In the present work, we provide unequivocal evidence to confirm that the heavy atom effect of HgĀ²āŗ is inhibited by water and other solvent molecules based on results using the chemosensor L. Most importantly, the heavy atom effect and blocking thereof were monitored within the same system by the use of ratiometric fluorescence signal changes of the pyrene motif. These observations not only serve as the foundation for the design of new ā€˜turn-onā€™ chemosensors for HTM ions, but also open up new opportunities for the monitoring of organic reactions

    Synthesis of a ditopic homooxacalix[3]arene for fluorescence enhanced detection of heavy and transition metal ions

    Get PDF
    A pyrene-appended ratiometric fluorescent chemosensor L based on a synthetic approach of insulating the fluorophore from the ionophore by a specific molecular spacer has been synthesised and characterised. The fluorescence spectra changes of L suggested that the chemosensor can detect heavy and transition metal (HTM) ions ratiometrically and with variable sensitivity according to the substituents present. Ā¹H NMR titration experiments indicated that the three triazole ligands prefer binding with HgĀ²āŗ, PbĀ²āŗ and ZnĀ²āŗ, resulting in a conformational change that produces monomer emission of the pyrene accompanied by the excimer quenching. However, the addition of FeĀ³āŗ, which may be accommodated by the cavity of L, makes the pyrene units move closer to each other, and a discernible increase in the emission intensity of the static excimer is observed. Therefore, it is believed that the ditopic scaffold of the calix[3]arene as a specific molecular spacer here plays an important role in the blocking of the heavy atom effect of HTM ions by insulating the fluorophore from the ionophore given the long distance between the metal cation and the pyrene moiety

    Assessment of English Teaching From Social - Anthropological Perspective: A Case Study of Microteaching in Warwick SJTU ETD Programme

    Get PDF
    Microteaching has gained considerable attention for its effectiveness in training teachers. Based on social-anthropological theory, a microteaching workshop in Warwick SJTU ETD Programme for 22 English teachers was investigated. Observation and interview, as the main basic methods, were applied to collect data. The results showed that microteaching offered participants an opportunity to practice teaching and receive useful feedback from peers and professional supervisors. Moreover, it was indicated that the improvement of teaching largely depends on self-reflection. The participants who were aware of teaching objectives and teaching aids, and opened to alternative teaching materials could easily manage the classroom teaching, and activate studentsā€™ learning

    LLCaps: Learning to Illuminate Low-Light Capsule Endoscopy with Curved Wavelet Attention and Reverse Diffusion

    Full text link
    Wireless capsule endoscopy (WCE) is a painless and non-invasive diagnostic tool for gastrointestinal (GI) diseases. However, due to GI anatomical constraints and hardware manufacturing limitations, WCE vision signals may suffer from insufficient illumination, leading to a complicated screening and examination procedure. Deep learning-based low-light image enhancement (LLIE) in the medical field gradually attracts researchers. Given the exuberant development of the denoising diffusion probabilistic model (DDPM) in computer vision, we introduce a WCE LLIE framework based on the multi-scale convolutional neural network (CNN) and reverse diffusion process. The multi-scale design allows models to preserve high-resolution representation and context information from low-resolution, while the curved wavelet attention (CWA) block is proposed for high-frequency and local feature learning. Furthermore, we combine the reverse diffusion procedure to further optimize the shallow output and generate the most realistic image. The proposed method is compared with ten state-of-the-art (SOTA) LLIE methods and significantly outperforms quantitatively and qualitatively. The superior performance on GI disease segmentation further demonstrates the clinical potential of our proposed model. Our code is publicly accessible.Comment: To appear in MICCAI 2023. Code availability: https://github.com/longbai1006/LLCap

    The First Polarimetric View on Quasi-Periodic Oscillations in a Black Hole X-ray Binary

    Full text link
    We present the first polarimetric analysis of Quasi-Periodic Oscillations (QPO) in a black hole binary utilizing \textit{IXPE} data. Our study focuses on Swift J1727.8--1613, which experienced a massive outburst that was observed by various telescopes across different wavelengths. The \textit{IXPE} observation we studied was conducted during the Hard-Intermediate state. The polarization degree (PD) and polarization angle (PA) were measured at 4.28Ā±\pm0.20\% and 1.9āˆ˜Ā±1.4āˆ˜1.9^{\circ}\pm1.4^{\circ}, respectively. Remarkably, significant QPO signals were detected during this observation, with a QPO frequency of approximately 1.34 Hz and a fractional root-mean-square (RMS) amplitude of about 12.3\%. Furthermore, we conducted a phase-resolved analysis of the QPO using the Hilbert-Huang transform technique. The photon index showed a strong modulation with respect to the QPO phase. In contrast, the PD and PA exhibit no modulations in relation to the QPO phase, which is inconsistent with the expectation of the Lense-Thirring precession of the inner flow. Further theoretical studies are needed to conform with the observational results.Comment: Accepted for publication in APJ

    High energy Millihertz quasi-periodic oscillations in 1A 0535+262 with Insight-HXMT challenge current models

    Get PDF
    We studied the millihertz quasi-periodic oscillation (mHz QPO) in the 2020 outburst of the Be/X-ray binary 1A 0535+262 using Insight-HXMT data over a broad energy band. The mHz QPO is detected in the 27-120 keV energy band. The QPO centroid frequency is correlated with the source flux, and evolves in the 35-95 mHz range during the outburst. The QPO is most significant in the 50-65 keV band, with a significance of ~ 8 sigma, but is hardly detectable (<2 sigma) in the lowest (1-27 keV) and highest (>120 keV) energy bands. Notably, the detection of mHz QPO above 80 keV is the highest energy at which mHz QPOs have been detected so far. The fractional rms of the mHz QPO first increases and then decreases with energy, reaching the maximum amplitude at 50-65 keV. In addition, at the peak of the outburst, the mHz QPO shows a double-peak structure, with the difference between the two peaks being constant at ~0.02 Hz, twice the spin frequency of the neutron star in this system. We discuss different scenarios explaining the generation of the mHz QPO, including the beat frequency model, the Keplerian frequency model, the model of two jets in opposite directions, and the precession of the neutron star, but find that none of them can explain the origin of the QPO well. We conclude that the variability of non-thermal radiation may account for the mHz QPO, but further theoretical studies are needed to reveal the physical mechanism.Comment: 13 pages, 7 figures. Accepted for publication in MNRA
    • ā€¦
    corecore