77 research outputs found

    This Other Eden: Exploring a Sense of Place in Twentieth-Century Reconstructions of Australian Childhoods

    Get PDF
    This thesis explores the sense of place formed during childhood, as remembered by adult Australians who reconstruct their youth through various forms of life writing. While Australian writers do utilize traditional tropes of Western autobiography, such as the mythology of Eden and the Wordsworthian image of the child communing with Nature, these themes are frequently transformed to meet a uniquely Australian context. Isolation and distance from Europe, and the apparent indifference of our landscape towards white settlement, have received much critical attention in Australian studies generally and, indeed, broadly influence the formation of children’s sense of place across the continent. However, writers are also concerned with the role of place on a more local level. Through a comparison of writing from Western Australia, Queensland and Victoria, this thesis explores regional landscape preoccupations that create an awareness of local identity, variously contributing to or frustrating the child’s sense of belonging. Western Australian writing is dominated by images of isolation, the fragility of white settlement in a dry land lacking fresh water, and a pervasive beach culture. A strong sense of the littoral pervades writing from this region. Queensland’s frontier mythology is of a different flavour: warm and tropical, nature here is exuberant, constantly threatening to overwhelm culture, already perceived as transient due to the flimsy aspect of the “Queenslander” house. Writing from Victoria, to some extent, tends to more closely follow English models, juxtaposing country and city environments, although there is a distinctly local flavour to many representations of urban Melbourne and its flat, grid-like organization. As Australian society becomes more concentrated on the coastal fringe, the beach is an increasingly significant environment. Though more prominent in writing from some regions than others, coastal imagery broadly reflects the modern Australian’s sense of inhabiting a liminal zone with negotiable boundaries

    Atenolol versus losartan in children and young adults with Marfan's syndrome

    Get PDF
    BACKGROUND : Aortic-root dissection is the leading cause of death in Marfan's syndrome. Studies suggest that with regard to slowing aortic-root enlargement, losartan may be more effective than beta-blockers, the current standard therapy in most centers. METHODS : We conducted a randomized trial comparing losartan with atenolol in children and young adults with Marfan's syndrome. The primary outcome was the rate of aortic-root enlargement, expressed as the change in the maximum aortic-root-diameter z score indexed to body-surface area (hereafter, aortic-root z score) over a 3-year period. Secondary outcomes included the rate of change in the absolute diameter of the aortic root; the rate of change in aortic regurgitation; the time to aortic dissection, aortic-root surgery, or death; somatic growth; and the incidence of adverse events. RESULTS : From January 2007 through February 2011, a total of 21 clinical centers enrolled 608 participants, 6 months to 25 years of age (mean [+/- SD] age, 11.5 +/- 6.5 years in the atenolol group and 11.0 +/- 6.2 years in the losartan group), who had an aorticroot z score greater than 3.0. The baseline-adjusted rate of change (+/- SE) in the aortic-root z score did not differ significantly between the atenolol group and the losartan group (-0.139 +/- 0.013 and -0.107 +/- 0.013 standard-deviation units per year, respectively; P = 0.08). Both slopes were significantly less than zero, indicating a decrease in the degree of aortic-root dilatation relative to body-surface area with either treatment. The 3-year rates of aortic-root surgery, aortic dissection, death, and a composite of these events did not differ significantly between the two treatment groups. CONCLUSIONS : Among children and young adults with Marfan's syndrome who were randomly assigned to losartan or atenolol, we found no significant difference in the rate of aorticroot dilatation between the two treatment groups over a 3-year period

    Expert consensus recommendations on the cardiogenetic care for patients with thoracic aortic disease and their first-degree

    Get PDF
    Background: Thoracic aortic aneurysm (TAA) is a potentially life-threatening disorder with a strong genetic component. The number of genes implicated in TAA has increased exponentially over the last decade. Approximately 20% of patients with TAA have a positive family history. As most TAA remain asymptomatic for a long time, screening of at risk relatives is warranted to prevent complications. Existing international guidelines lack detailed instructions regarding genetic evaluation and family screening of TAA patients. We aimed to develop a consensus document to provide medical guidance for all health care professionals involved in the recognition, diagnosis and treatment of patients with thoracic aortic disease and their relatives. Methods: A multidisciplinary panel of experts including cardiologists, cardiothoracic surgeons, clinical geneticists and general practitioners, convened to review and discuss the current literature, guidelines and clinical practice on genetic testing and family screening in TAA. Results: There is a lack of high-quality evidence in the literature. This consensus statement, based on the available literature and expert opinions, summarizes our recommendations in order to standardize and optimize the cardiogenetic care for patients and families with thoracic aortic disease. In particular, we provide criteria to identify those patients most likely to have a genetic predisposition, and discuss the preferred modality and frequency of screening in their relatives. Conclusions: Age, family history, aortic size and syndromic features determine who is advised to have genetic testing as well as screening of first-degree relatives. There is a need for more prospective multicenter studies to optimize current recommendations

    Absence of cardiovascular manifestations in a haploinsufficient Tgfbr1 mouse model

    Get PDF
    Loeys-Dietz syndrome (LDS) is an autosomal dominant arterial aneurysm disease belonging to the spectrum of transforming growth factor β (TGFβ)-associated vasculopathies. In its most typical form it is characterized by the presence of hypertelorism, bifid uvula/cleft palate and aortic aneurysm and/or arterial tortuosity. LDS is caused by heterozygous loss of function mutations in the genes encoding TGFβ receptor 1 and 2 (TGFBR1 and -2), which lead to a paradoxical increase in TGFβ signaling. To address this apparent paradox and to gain more insight into the pathophysiology of aneurysmal disease, we characterized a new Tgfbr1 mouse model carrying a p.Y378*nonsense mutation. Study of the natural history in this model showed that homozygous mutant mice die during embryonic development due to defective vascularization. Heterozygous mutant mice aged 6 and 12 months were morphologically and (immuno)histochemically indistinguishable from wild-type mice. We show that the mutant allele is degraded by nonsense mediated mRNA decay, expected to result in haploinsufficiency of the mutant allele. Since this haploinsufficiency model does not result in cardiovascular malformations, it does not allow further study of the process of aneurysm formation. In addition to providing a comprehensive method for cardiovascular phenotyping in mice, the results of this study confirm that haploinsuffciency is not the underlying genetic mechanism in human LDS

    A mutation update for the FLNC gene in myopathies and cardiomyopathies

    Get PDF
    Filamin C (FLNC) variants are associated with cardiac and muscular phenotypes. Originally, FLNC variants were described in myofibrillar myopathy (MFM) patients. Later, high-throughput screening in cardiomyopathy cohorts determined a prominent role for FLNC in isolated hypertrophic and dilated cardiomyopathies (HCM and DCM). FLNC variants are now among the more prevalent causes of genetic DCM. FLNC-associated DCM is associated with a malignant clinical course and a high risk of sudden cardiac death. The clinical spectrum of FLNC suggests different pathomechanisms related to variant types and their location in the gene. The appropriate functioning of FLNC is crucial for structural integrity and cell signaling of the sarcomere. The secondary protein structure of FLNC is critical to ensure this function. Truncating variants with subsequent haploinsufficiency are associated with DCM and cardiac arrhythmias. Interference with the dimerization and folding of the protein leads to aggregate formation detrim

    Candidate gene resequencing in a large bicuspid aortic valve-associated thoracic aortic aneurysm cohort: SMAD6 as an important contributor

    Get PDF
    Bicuspid aortic valve (BAV) is the most common congenital heart defect. Although many BAV patients remain asymptomatic, at least 20% develop thoracic aortic aneurysm (TAA). Historically, BAV-related TAA was considered as a hemodynamic consequence of the valve defect. Multiple lines of evidence currently suggest that genetic determinants contribute to the pathogenesis of both BAV and TAA in affected individuals. Despite high heritability, only very few genes have been linked to BAV or BAV/TAA, such as NOTCH1, SMAD6, and MAT2A. Moreover, they only explain a minority of patients. Other candidate genes have been suggested based on the presence of BAV in knockout mouse models (e.g., GATA5, NOS3) or in syndromic (e.g., TGFBR1/2, TGFB2/3) or non-syndromic (e.g., ACTA2) TAA forms. We hypothesized that rare genetic variants in these genes may be enriched in patients presenting with both BAV and TAA. We performed targeted resequencing of 22 candidate genes using Haloplex target enrichment in a strictly defined BAV/TAA cohort (n = 441; BAV in addition to an aortic root or ascendens diameter = 4.0 cm in adults, or a Z-score = 3 in children) and in a collection of healthy controls with normal echocardiographic evaluation (n = 183). After additional burden analysis against the Exome Aggregation Consortium database, the strongest candidate susceptibility gene was SMAD6 (p = 0.002), with 2.5% (n = 11) of BAV/TAA patients harboring causal variants, including two nonsense, one in-frame deletion and two frameshift mutations. All six missense mutations were located in the functionally important MH1 and MH2 domains. In conclusion, we report a significant contribution of SMAD6 mutations to the etiology of the BAV/TAA phenotype

    Angiotensin receptor blockers: a panacea for Marfan syndrome and related disorders?

    No full text
    Item does not contain fulltextThe study of mouse models for Marfan syndrome, an autosomal dominant connective tissue disorder caused by mutations in fibrillin-1 (FBN1), has shifted our understanding of the pathogenesis of thoracic aortic aneurysm significantly. Multiple lines of evidence support the notion that dysregulation of canonical and noncanonical transforming growth factor (TGF)beta signaling is the responsible pathway in this and related thoracic aortic aneurysm conditions. This exciting knowledge has opened numerous new treatment options, including antagonism of the angiotensin II receptor blocker type 1 (AT1R). In this review, we summarize the current knowledge, the first human losartan Marfan trial results and future therapeutic perspectives for aortic disease in Marfan patients

    Bone lessons from Marfan syndrome and related disorders: fibrillin, TGF-B and BMP at the balance of too long and too short

    No full text
    Item does not contain fulltextThe extracellular matrix (ECM) is a complex entity with structural proteins (such as fibrillins, collagen, elastin), ground substance (proteoglycans), modifying enzymes (ADAMTS, PLOD, lysyloxidases (LOX)) and cytokines that regulate morphogenesis, growth, homeostasis and repair (transforming growth factor-beta [TGF-beta], bone morphogenic protein [BMP]). Over the last decade, the intimate relationship between structural proteins and these growth factors has emerged. The study of the extracellular matrix in human conditions and relevant mouse models is gradually unmasking the key role of these structural molecules in the regulation of the bio-availability of these growth factors. Major progress has been made in the study of the cardiovascular system (1) and the first clues in the skeletal system have emerged. (2) In this review, we will discuss the clinical, molecular, and pathogenic aspects of Marfan syndrome, Loeys-Dietz syndrome and related disorders with emphasis on the role of fibrillins and TGF-beta

    Structural genomic variants in thoracic aortic disease.

    No full text
    PURPOSE OF REVIEW: Structural genomic variants have emerged as a relevant cause for several disorders, including intellectual disability, neuropsychiatric disorders, cancer and congenital heart disease. In this review, we will discuss the current knowledge about the involvement of structural genomic variants and, in particular, copy number variants in the development of thoracic aortic and aortic valve disease. RECENT FINDINGS: There is a growing interest in the identification of structural variants in aortopathy. Copy number variants identified in thoracic aortic aneurysms and dissections, bicuspid aortic valve related aortopathy, Williams-Beuren syndrome and Turner syndrome are discussed in detail. Most recently, the first inversion disrupting FBN1 has been reported as a cause for Marfan syndrome. SUMMARY: During the past 15 years, the knowledge on the role of copy number variants as a cause for aortopathy has grown significantly, which is partially due to the development of novel technologies including next-generation sequencing. Although copy number variants are now often investigated on a routine basis in diagnostic laboratories, more complex structural variants such as inversions, which require the use of whole genome sequencing, are still relatively new to the field of thoracic aortic and aortic valve disease
    • …
    corecore