372 research outputs found
Conditional expectations associated with quantum states
An extension of the conditional expectations (those under a given subalgebra
of events and not the simple ones under a single event) from the classical to
the quantum case is presented. In the classical case, the conditional
expectations always exist; in the quantum case, however, they exist only if a
certain weak compatibility criterion is satisfied. This compatibility criterion
was introduced among others in a recent paper by the author. Then,
state-independent conditional expectations and quantum Markov processes are
studied. A classical Markov process is a probability measure, together with a
system of random variables, satisfying the Markov property and can equivalently
be described by a system of Markovian kernels (often forming a semigroup). This
equivalence is partly extended to quantum probabilities. It is shown that a
dynamical (semi)group can be derived from a given system of quantum observables
satisfying the Markov property, and the group generators are studied. The
results are presented in the framework of Jordan operator algebras, and a very
general type of observables (including the usual real-valued observables or
self-adjoint operators) is considered.Comment: 10 pages, the original publication is available at http://www.aip.or
Principal manifolds and graphs in practice: from molecular biology to dynamical systems
We present several applications of non-linear data modeling, using principal
manifolds and principal graphs constructed using the metaphor of elasticity
(elastic principal graph approach). These approaches are generalizations of the
Kohonen's self-organizing maps, a class of artificial neural networks. On
several examples we show advantages of using non-linear objects for data
approximation in comparison to the linear ones. We propose four numerical
criteria for comparing linear and non-linear mappings of datasets into the
spaces of lower dimension. The examples are taken from comparative political
science, from analysis of high-throughput data in molecular biology, from
analysis of dynamical systems.Comment: 12 pages, 9 figure
Determining the Spectral Signature of Spatial Coherent Structures
We applied to an open flow a proper orthogonal decomposition (pod) technique,
on 2D snapshots of the instantaneous velocity field, to reveal the spatial
coherent structures responsible of the self-sustained oscillations observed in
the spectral distribution of time series. We applied the technique to 2D planes
out of 3D direct numerical simulations on an open cavity flow. The process can
easily be implemented on usual personal computers, and might bring deep
insights on the relation between spatial events and temporal signature in (both
numerical or experimental) open flows.Comment: 4 page
An extension of Wiener integration with the use of operator theory
With the use of tensor product of Hilbert space, and a diagonalization
procedure from operator theory, we derive an approximation formula for a
general class of stochastic integrals. Further we establish a generalized
Fourier expansion for these stochastic integrals. In our extension, we
circumvent some of the limitations of the more widely used stochastic integral
due to Wiener and Ito, i.e., stochastic integration with respect to Brownian
motion. Finally we discuss the connection between the two approaches, as well
as a priori estimates and applications.Comment: 13 page
A weighted reduced basis method for parabolic PDEs with random data
This work considers a weighted POD-greedy method to estimate statistical
outputs parabolic PDE problems with parametrized random data. The key idea of
weighted reduced basis methods is to weight the parameter-dependent error
estimate according to a probability measure in the set-up of the reduced space.
The error of stochastic finite element solutions is usually measured in a root
mean square sense regarding their dependence on the stochastic input
parameters. An orthogonal projection of a snapshot set onto a corresponding POD
basis defines an optimum reduced approximation in terms of a Monte Carlo
discretization of the root mean square error. The errors of a weighted
POD-greedy Galerkin solution are compared against an orthogonal projection of
the underlying snapshots onto a POD basis for a numerical example involving
thermal conduction. In particular, it is assessed whether a weighted POD-greedy
solutions is able to come significantly closer to the optimum than a
non-weighted equivalent. Additionally, the performance of a weighted POD-greedy
Galerkin solution is considered with respect to the mean absolute error of an
adjoint-corrected functional of the reduced solution.Comment: 15 pages, 4 figure
Bohmian arrival time without trajectories
The computation of detection probabilities and arrival time distributions
within Bohmian mechanics in general needs the explicit knowledge of a relevant
sample of trajectories. Here it is shown how for one-dimensional systems and
rigid inertial detectors these quantities can be computed without calculating
any trajectories. An expression in terms of the wave function and its spatial
derivative, both restricted to the boundary of the detector's spacetime volume,
is derived for the general case, where the probability current at the
detector's boundary may vary its sign.Comment: 20 pages, 12 figures; v2: reference added, extended introduction,
published versio
Mixtures in non stable Levy processes
We analyze the Levy processes produced by means of two interconnected classes
of non stable, infinitely divisible distribution: the Variance Gamma and the
Student laws. While the Variance Gamma family is closed under convolution, the
Student one is not: this makes its time evolution more complicated. We prove
that -- at least for one particular type of Student processes suggested by
recent empirical results, and for integral times -- the distribution of the
process is a mixture of other types of Student distributions, randomized by
means of a new probability distribution. The mixture is such that along the
time the asymptotic behavior of the probability density functions always
coincide with that of the generating Student law. We put forward the conjecture
that this can be a general feature of the Student processes. We finally analyze
the Ornstein--Uhlenbeck process driven by our Levy noises and show a few
simulation of it.Comment: 28 pages, 3 figures, to be published in J. Phys. A: Math. Ge
On the Legendre differential equation with uncertainties at the regular-singular point 1: Lp random power series solution and approximation of its statistical moments
"This is the peer reviewed version of the following article: Calatayud, J, Cortés, J-;C, Jornet, M. On the Legendre differential equation with uncertainties at the regular-singular point 1: Lp random power series solution and approximation of its statistical moments. Comp and Math Methods. 2019; 1:e1045. https://doi.org/10.1002/cmm4.1045 , which has been published in final form at https://doi.org/10.1002/cmm4.1045. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] In this paper, we construct two linearly independent response processes to the random Legendre differential equation on (-1,1)U(1,3), consisting of Lp(omega) convergent random power series around the regular¿singular point 1. A theorem on the existence and uniqueness of Lp(omega) solution to the random Legendre differential equation on the intervals (-1,1) and (1,3) is obtained. The hypotheses assumed are simple: initial conditions in Lp(omega) and random input A in L infinite(omega) (this is equivalent to A having absolute moments that grow at most exponentially). Thus, this paper extends the deterministic theory to a random framework. Uncertainty quantification for the solution stochastic process is performed by truncating the random series and taking limits in Lp(omega). In the numerical experiments, we approximate its expectation and variance for certain forms of the differential equation. The reliability of our approach is compared with Monte Carlo simulations and generalized polynomial chaos expansions.Spanish Ministerio de Economía y Competitividad, Grant/Award Number: MTM2017-89664-P; Programa de Ayudas de Investigación y Desarrollo; Universitat Politècnica de ValènciaCalatayud-Gregori, J.; Cortés, J.; Jornet-Sanz, M. (2019). On the Legendre differential equation with uncertainties at the regular-singular point 1: Lp random power series solution and approximation of its statistical moments. Computational and Mathematical Methods. 1(4):1-12. https://doi.org/10.1002/cmm4.1045S11214Calbo, G., Cortés, J.-C., Jódar, L., & Villafuerte, L. (2011). Solving the random Legendre differential equation: Mean square power series solution and its statistical functions. Computers & Mathematics with Applications, 61(9), 2782-2792. doi:10.1016/j.camwa.2011.03.045Villafuerte, L., Braumann, C. A., Cortés, J.-C., & Jódar, L. (2010). Random differential operational calculus: Theory and applications. Computers & Mathematics with Applications, 59(1), 115-125. doi:10.1016/j.camwa.2009.08.061Wong, E., & Hajek, B. (1985). Stochastic Processes in Engineering Systems. Springer Texts in Electrical Engineering. doi:10.1007/978-1-4612-5060-9Nouri, K., & Ranjbar, H. (2014). Mean Square Convergence of the Numerical Solution of Random Differential Equations. Mediterranean Journal of Mathematics, 12(3), 1123-1140. doi:10.1007/s00009-014-0452-8Lupulescu, V., O’Regan, D., & ur Rahman, G. (2014). Existence results for random fractional differential equations. Opuscula Mathematica, 34(4), 813. doi:10.7494/opmath.2014.34.4.813Villafuerte, L., & Chen-Charpentier, B. M. (2012). A random differential transform method: Theory and applications. Applied Mathematics Letters, 25(10), 1490-1494. doi:10.1016/j.aml.2011.12.033Licea, J. A., Villafuerte, L., & Chen-Charpentier, B. M. (2013). Analytic and numerical solutions of a Riccati differential equation with random coefficients. Journal of Computational and Applied Mathematics, 239, 208-219. doi:10.1016/j.cam.2012.09.040Lang, S. (1997). Undergraduate Analysis. Undergraduate Texts in Mathematics. doi:10.1007/978-1-4757-2698-5Cortés, J.-C., Romero, J.-V., Roselló, M.-D., Santonja, F.-J., & Villanueva, R.-J. (2013). Solving Continuous Models with Dependent Uncertainty: A Computational Approach. Abstract and Applied Analysis, 2013, 1-10. doi:10.1155/2013/983839Calatayud, J., Cortés, J. C., Jornet, M., & Villanueva, R. J. (2018). Computational uncertainty quantification for random time-discrete epidemiological models using adaptive gPC. Mathematical Methods in the Applied Sciences, 41(18), 9618-9627. doi:10.1002/mma.531
L\'evy-Schr\"odinger wave packets
We analyze the time--dependent solutions of the pseudo--differential
L\'evy--Schr\"odinger wave equation in the free case, and we compare them with
the associated L\'evy processes. We list the principal laws used to describe
the time evolutions of both the L\'evy process densities, and the
L\'evy--Schr\"odinger wave packets. To have self--adjoint generators and
unitary evolutions we will consider only absolutely continuous, infinitely
divisible L\'evy noises with laws symmetric under change of sign of the
independent variable. We then show several examples of the characteristic
behavior of the L\'evy--Schr\"odinger wave packets, and in particular of the
bi-modality arising in their evolutions: a feature at variance with the typical
diffusive uni--modality of both the L\'evy process densities, and the usual
Schr\"odinger wave functions.Comment: 41 pages, 13 figures; paper substantially shortened, while keeping
intact examples and results; changed format from "report" to "article";
eliminated Appendices B, C, F (old names); shifted Chapters 4 and 5 (old
numbers) from text to Appendices C, D (new names); introduced connection
between Relativistic q.m. laws and Generalized Hyperbolic law
Recommended from our members
A dynamic route choice model for public transport networks with boarding queues
The concepts of optimal strategy and hyperpath were born within the framework of static frequency-based public transport assignment, where it is assumed that travel times and frequencies do not change over time and no overcrowding occurs. However, the formation of queues at public transport stops can prevent passengers from boarding the first vehicle approaching and can thus lead to additional delays in their trip. Assuming that passengers know from previous experience that for certain stops/lines they will have to wait for the arrival of the 2nd, 3rd, …, k-th vehicle, they may alter their route choices, thus resulting in a different assignment of flows across the network. The aim of this paper is to investigate route choice behaviour changes as a result of the formation and dispersion of queues at stops within the framework of optimal travel strategies. A new model is developed, based on modifications of existing algorithms
- …