47 research outputs found

    Analisis Pajak Penghasilan Pasal 23 Atas Jasa Freight Forwarding Pada PT Armarda Samudera Samarinda

    Full text link
    Penelitian ini akan dibahas mengingat kegiatan Jasa Freight Forwarding yang dilakukan oleh PT. Armada Samudera Raya merupakan objek PPh Pasal 23 yang harus dilakukan perhitungan, pemotongan, penyetoran dan pelaporan di kantor pajak yang terdekat. Dalam menjalankan USAha jasa Freight Forwarding pada PT. Armada Samudera menggunakan pihak ketiga atau sistem Reimbursement. Mengetahui perhitungan dan pemotongan PPh pasal 23 atas jasa Freight Forwarding yang termasuk jenis jasa lain, dasar pengenaan objek pemotongan PPh 23 sebesar 2 % dari jumlah bruto (Penghasilan).Rumusan masalah dalam penelitian ini adalah “Apakah pemotongan Pajak Penghasilan (PPh) Pasal 23 atas jasa freight forwarding pada PT. Armada Samudera Raya telah sesuai dengan Peraturan Menteri Keuangan 141/PMK.03/2015 dan Undang-Undang Nomor 36 Tahun 2008?”. Alat analisis yang digunakan adalah perhitungan PPh berdasarkan Peraturan Menteri Keuangan Nomor 141/pmk.03/2015 dan Undang-Undang Nomor 7 Tahun 1983 tentang Pajak Penghasilan yang telah diubah terakhir dengan Undang-Undang Nomor 36 Tahun 2008 mewajibkan setiap Perusahaan sebagai wajib pajak untuk melakukan pemotongan PPh 23 sebesar 2 % dari jumlah bruto (Penghasilan) dan membadingkannya dengan perhitungan Perusahaan. Hasil dari penelitian ini adalah Hipotesis diterima apabila pemotongan Pajak Penghasilan (PPh) Pasal 23 atas jasa freight forwarding pada PT. Armada Samudera Raya belum sesuai dengan Peraturan Menteri Keuangan 141/PMK.03/2015 dan Undang-Undang Nomor 36 Tahun 2008 dan sebaliknya Hipotesis ditolak apabila pemotongan Pajak Penghasilan (PPh) Pasal 23 atas jasa freight forwarding pada PT. Armada Samudera Raya sudah sesuai dengan Peraturan Menteri Keuangan 141/PMK.03/2015 dan Undang-Undang Nomor 36 Tahun 2008

    S1 Data -

    No full text
    In this work, the electro-coalescence process of three nanodroplets under a constant DC electric field is investigated via molecular dynamics simulations (MD), aiming to explore the electric manipulation of multiple droplets coalescence on the molecular level. The symmetrical and asymmetrical dynamic evolutions of electrocoalescence process can be observed. Our MD simulations show that there are two types of critical electric fields to induce the special dynamics. The chain configuration can be formed, when one of the critical electric field is exceeded, referred to as Ecc. On the other hand, there is another critical electric field to change the coalescence pattern from complete coalescence to partial coalescence, the so-called Ecn. Finally, we find that the use of the pulsed DC electric field can overcome the drawbacks of the constant DC electric field in the crude oil industry, and the mechanisms behind the suppressed effect of the water chain or non-coalescence are further revealed.</div

    Radial distribution functions <i>g</i><sub>ion-O</sub>(<i>r</i>) together with their integrals <i>N</i><sub>ion-O</sub>(<i>r</i>) corresponding to generation of secondary droplets at <i>t</i> = 187 ps.

    No full text
    Radial distribution functions gion-O(r) together with their integrals Nion-O(r) corresponding to generation of secondary droplets at t = 187 ps.</p

    Fig 5 -

    No full text
    (a) The asymmetrical coalescence dynamics of three charged droplets under E = 0.3 V nm-1. Here, the initial gap thicknesses possess different values of l1 = 2 nml2 = 4 nm. Variation of centroid coordinate during coalescence for (b) l1 = 2 nml2 = 4 nm, and (c) l1 = 4 nm> l2 = 2 nm.</p

    Snapshots of dynamic coalescence process of three charged nanodroplets under a constant DC electric field of <i>E</i> = 0.3 V nm<sup>-1</sup>.

    No full text
    Snapshots of dynamic coalescence process of three charged nanodroplets under a constant DC electric field of E = 0.3 V nm-1.</p

    Fig 9 -

    No full text
    Applying pulsed DC electric field of (a) 0.4 V nm-1 to small simulated domain, and (b) 0.7 V nm-1 to large simulated domain to induce the droplets coalescence.</p

    Fig 4 -

    No full text
    Variation of (a) dimensionless length before droplets contact and (b) centroid coordinate during coalescence process as a function of time under E = 0.3 V nm-1.</p

    Fig 6 -

    No full text
    (a) Variation of the dimensionless deformation ratio versus the increasing electric field strength ranging from 1.0 to 3.75 V nm-1; (b) the deformation of the coalescing droplet under E = 1.5, 2.75, and 3.75 V nm-1; (c) forming the chain configuration under E = 4.0 V nm-1.</p

    Fig 7 -

    No full text
    (a) Dynamic coalescence process under E = 0.4 V nm-1 within an enlarging simulation domain, and (b) breakup of the coalescing droplet under E = 0.51 V nm-1, leading to the non-coalescence dynamics.</p

    Fig 2 -

    No full text
    Experimental results of complete coalescence at (a1) E = 193 V mm-1 and non-coalescence at (b1) E = 233 V mm-1; MD results of complete coalescence at (a2) E = 0.3 V nm-1 and non-coalescence at (b2) E = 0.65 V nm-1.</p
    corecore