88 research outputs found

    Triggering Deep Convection with a Probabilistic Plume Model

    Get PDF
    A model unifying the representation of the planetary boundary layer and dry, shallow and deep convection, the Probabilistic Plume Model (PPM), is presented. Its capacity to reproduce the triggering of deep convection over land is analysed in detail. The model accurately reproduces the timing of shallow convection and of deep convection onset over land, which is a major issue in many current general climate models. The PPM is based on a distribution of plumes with varying thermodynamic states (potential temperature and specific humidity) induced by surface layer turbulence. Precipitation is computed by a simple ice microphysics, and with the onset of precipitation, downdrafts are initiated and lateral entrainment of environmental air into updrafts is reduced. The most buoyant updrafts are responsible for the triggering of moist convection, causing the rapid growth of clouds and precipitation. Organization of turbulence in the subcloud layer is induced by unsaturated downdrafts, and the effect of density currents is modeled through a reduction of the lateral entrainment. The reduction of entrainment induces further development from the precipitating congestus phase to full deep cumulonimbus. Model validation is performed by comparing cloud base, cloud top heights, timing of precipitation and environmental profiles against cloud resolving models and large-eddy simulations for two test cases. These comparisons demonstrate that PPM triggers deep convection at the proper time in the diurnal cycle, and produces reasonable precipitation. On the other hand, PPM underestimates cloud top height

    Interdependence of climate, soil, and vegetation as constrained by the Budyko curve

    Get PDF
    The Budyko curve is an empirical relation among evapotranspiration, potential evapotranspiration and precipitation observed across a variety of landscapes and biomes around the world. Using data from more than three hundred catchments and a simple water balance model, the Budyko curve is inverted to explore the ecohydrological controls of the soil water balance. Comparing the results across catchments reveals that aboveground transpiration efficiency and belowground rooting structure have adapted to the dryness index and the phase lag between peak seasonal radiation and precipitation. The vertical and/or lateral extent of the rooting zone exhibits a maximum in semi-arid catchments or when peak radiation and precipitation are out of phase. This demonstrates plant strategies in Mediterranean climates in order to cope with water stress: the deeper rooting structure buffers the phase difference between precipitation and radiation. Results from this study can be used to constrain land-surface parameterizations in ungauged basins or general circulation models

    Impact of Soil Moisture–Atmosphere Interactions on Surface Temperature Distribution

    Get PDF
    Understanding how different physical processes can shape the probability distribution function (PDF) of surface temperature, in particular the tails of the distribution, is essential for the attribution and projection of future extreme temperature events. In this study, the contribution of soil moisture–atmosphere interactions to surface temperature PDFs is investigated. Soil moisture represents a key variable in the coupling of the land and atmosphere, since it controls the partitioning of available energy between sensible and latent heat flux at the surface. Consequently, soil moisture variability driven by the atmosphere may feed back onto the near-surface climate—in particular, temperature. In this study, two simulations of the current-generation Geophysical Fluid Dynamics Laboratory (GFDL) Earth System Model, with and without interactive soil moisture, are analyzed in order to assess how soil moisture dynamics impact the simulated climate. Comparison of these simulations shows that soil moisture dynamics enhance both temperature mean and variance over regional ‘‘hotspots’’ of land–atmosphere coupling.Moreover, higher-order distribution moments, such as skewness and kurtosis, are also significantly impacted, suggesting an asymmetric impact on the positive and negative extremes of the temperature PDF. Such changes are interpreted in the context of altered distributions of the surface turbulent and radiative fluxes. That the moments of the temperature distribution may respond differentially to soil moisture dynamics underscores the importance of analyzing moments beyond the mean and variance to characterize fully the interplay of soil moisture and near-surface temperature. In addition, it is shown that soil moisture dynamics impacts daily temperature variability at different time scales over different regions in the model

    Amplification of wet and dry month occurrence over tropical land regions in response to global warming

    Get PDF
    Quantifying how global warming impacts the spatiotemporal distribution of precipitation represents a key scientific challenge with profound implications for human welfare. Utilizing monthly precipitation data from Coupled Model Intercomparison Project (CMIP3) climate change simulations, the results here show that the occurrence of very dry (10 mm/day) months comprises a straightforward, robust metric of anthropogenic warming on tropical land region rainfall. In particular, differencing tropics-wide precipitation frequency histograms for 25-year periods over the late 21st and 20th centuries shows increased late-21st-century occurrence of histogram extremes both in the model ensemble and across individual models. Mechanistically, such differences are consistent with the view of enhanced tropical precipitation spatial gradients. Similar diagnostics are calculated for two 15-year subperiods over 1979–2008 for the CMIP3 models and three observational precipitation products to assess whether the signature of late-21st-century warming has already emerged in response to recent warming. While both the observations and CMIP3 ensemble-mean hint at similar amplification in the warmer (1994–2008) subinterval, the changes are not robust, as substantial differences are evident among the observational products and the intraensemble spread is large. Comparing histograms computed from the warmest and coolest years of the observational period further demonstrates effects of internal variability, notably the El Niño/Southern Oscillation, which appear to oppose the impact of quasi-uniform anthropogenic warming on the wet tail of the monthly precipitation distribution. These results identify the increase of very dry and wet occurrences in monthly precipitation as a potential signature of anthropogenic global warming but also highlight the continuing dominance of internal climate variability on even bulk measures of tropical rainfall
    • …
    corecore