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Surface hydrology has experienced 
tremendous progress in the last few decades 
thanks to observational campaigns and 

platforms, the development of new theories and 
models, and the increase in computational power. 
Still, the spatial scales resolved in weather (~10 
km) and climate (~100 km) models remain too 
coarse for accurate water resource management, 
prediction of floods, ecosystem services, and 
water quality, as well as accurate stream flow 
determination. 

Surface hydrologic processes are often viewed 
or analyzed at the scale of watersheds, which is also 
the scale at which water resources management 
occurs. Larger watersheds may be subdivided 
into a set of smaller watersheds. The area of a 
watershed ranges from a few hectares (100 m2) 
to thousands of square kilometers. The smaller 
watersheds are interconnected and constrain the 
surface water budget. Even over small watersheds, 
heterogeneities in the soil, topography, and 
vegetation can profoundly affect the surface water 
cycle (Maxwell et al. 2007; Weigel et al. 2007). 

Consequently, the current generation of numerical 
weather and climate prediction models fall short of 
reasonably forecasting the local surface hydrologic 
state (e.g., soil moisture, evapotranspiration, and 
surface runoff). Higher-resolution modeling is thus 
required (Wood et al. 2011) for accurate surface 
hydrologic prediction. 

The large range of temporal scales in hydrology, 
from sub-hourly to decadal and beyond, also 
creates challenges. Even while our ability to 
numerically model the range of time scales has 
greatly improved with increased computational 
power, the datasets necessary to validate models 
across the entire range of scales are absent. Thus, 
it is quite possible that a model that works well on 
a particular time scale may be insufficient on other 
time scales.

A further challenge to accurate representation 
of the surface hydrologic state involves the 
scaling of physical surface hydrologic processes 
themselves (Entekhabi et al. 1999). At present, 
our understanding of the scaling (both up and 
down) of such processes remains relatively 

Abstract: This paper presents a review of the challenges in spatial and temporal scales in surface 
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unsophisticated. Land-surface and numerical 
weather prediction models are often used across 
a wide range of spatial scales (1-100 km) without 
modifications to the physical representations, 
even though component physical schemes may 
have been developed and tested at much smaller 
scales. Natural heterogeneity profoundly affects 
the response of surface hydrology through myriad 
non-linear processes that cannot easily be scaled up 
or down to the scale of interest. In addition, most 
hydrologic laws have been developed at scales of 
order ~1-100 m and may not accurately represent 
these processes on a coarser scale (Bloschl and 
Sivapalan 1995; McDonnell et al. 2007). At the 
hillslope scale, for instance, preferential flow is 
observed, which cannot be explained by directly 
scaling up local hydrologic flow (Weiler and 
McDonnell 2007).  A new paradigm is thus needed 
to systematically develop scaling laws in surface 
hydrology.

Systemic Issues
Our objective here is to describe some of the 

major challenges associated with the scaling and 
resolution in both modeling and measurements 
of surface hydrologic processes. Rather than an 
exhaustive survey,  we view three systemic issues 
as key: nonlinearities and heterogeneities; non-
local transport processes; and scale discrepancies 
between observations and models.  These issues 
must be overcome to build a stronger foundation 
in hydrologic scaling.

Nonlinearities and Heterogeneities

Nonlinearities are common features of natural 
physical systems, and surface hydrology is no 
exception (Schertzer et al. 2010). However, many 
of the laws in physical models are based on linear 
approximations. Here, we review several examples 
of nonlinearities pertaining to surface hydrology.

Soil Moisture

The famous Richards equation, which represents 
the movement of water in unsaturated soils 
(Richards 1931), is a nonlinear partial differential 
equation that describes the flow of water in surface 
hydrologic models. Richards’ equation is based 
on the conservation of moisture and Darcy’s law 

(Darcy 1856), which was originally derived at a 
scale of order 10-100 m and can be theoretically 
derived based on averaging the Navier-Stokes 
equation in a homogenous porous medium 
via homogenization. In most land-surface and 
weather/climate models, the Richards equation 
applies directly to horizontal scales ranging from 
10 to 100 km (see Figure 1). However, it remains 
unclear whether this equation should hold at these 
scales; assuming that it does, one still faces the 
task of determining precisely how subgrid-scale 
heterogeneity should be accounted for in the large-
scale version. Indeed, even the very meaning of 
soil moisture at the larger scale is unclear: is it a 
weighted version of local values, or can we directly 
compare the coarse-scale estimate from a model 
or remote sensing to the locally observed value? 
Recent studies have demonstrated that topography, 
subsurface flow, and land-atmosphere interactions 
have a fundamental impact on soil moisture 
organization and require high-resolution modeling 
(500 m) to meaningfully describe the soil moisture 
field  (see Figure 3, adopted from Maxwell et al. 
2007).

Evapotranspiration
Our understanding of turbulent heat (i.e., 

sensible and latent) fluxes at the land surface is 
based on observations performed on a local scale, 
on local scaling considerations, and the use of the 
Richardson or Monin-Obukhov theories (Monin 
and Obukhov 1954; Paulson 1970; Businger et al. 
1971; Dyer 1974; Louis 1979; Mahrt 1987; Holtslag 
and Beljaars 1989). Even though considerable 
effort has been devoted to account for sub-grid 
scale heterogeneity in the land surface (Entekhabi 
and Eagleson 1989; Koster and Suarez 1992; Liang 
et al. 1994; Mahrt 1996; Best et al. 2004), there 
remain fundamental gaps in our understanding 
of the scaling up of surface turbulent fluxes, 
namely how to scale up relationships that were 
developed on a relatively local scale (10-100m) 
to the grid size of the land surface model or NWP 
and climate models (1-100km). The turbulent heat 
flux scaling laws are fundamentally non-linear 
and their representativeness is not clear at larger 
scales. The surface can exhibit heterogeneity 
over a large range of spatial scales induced by the 
landscape, topography, and vegetation. In addition, 
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atmospheric turbulence leads to horizontal 
variations in the properties of the boundary layer 
(depth, temperature, humidity) at scales of about 
1 km, which can profoundly impact the surface 
heat fluxes in return. Considerable effort is thus 
required to represent turbulent heat fluxes with 
fidelity in land-surface and climate models.

Snow

In many parts of the world, snow plays an 
important role in regional hydrology, and snow 
suffers from many of the same issues as soil 
moisture. The development of the seasonal 
snowpack is a time-integrative, spatially-
varying process, with periods of accumulation 
and melt that are spatially varying. Within the 
scale of a land surface model or remote sensing 
pixel (~10-100 km), topography and land cover 
exert considerable controls on snow processes. 

Some models account for sub-grid heterogeneity 
(Cherkauer and Lettenmaier 2003), but this is done 
in a statistical framework that requires additional 
parameterization. There can also be considerable 
redistribution of snow within the grid cell scale due 
to high winds, which is dependent on topography 
and wind fetch and rarely accounted for in models 
(Bowling et al. 2004). Along with blowing snow, 
sublimation can occur, which suffers from the 
same problems of heterogeneity as discussed in the 
evapotranspiration section above.

Non-Local Transport Processes

As described in the previous section, most 
fundamental laws used in the representation of 
surface hydrologic processes were derived at 
scales of 1-100 m. There is, however, compelling 
evidence that many hydrological transport 

Figure 1.  Spatial and temporal scales of hydrological physical processes.
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processes are non-local in nature. Thus, site-level, 
“point” measurements may provide an incomplete 
picture of the actual processes.  For instance, it has 
been recently demonstrated that sediment transport 
on a hillslope and bedrock channel evolution are 
non-local (Starj 2009; Foufoula-Georgiou 2010) 
and exhibit a wide range of scales with a fractal 
structure  (modeled with a fractional Fickian 
process) and cannot be modeled using a typical 
Fick’s law, in which flux is proportional to some 
potential gradient. 

Similarly, careful analytical derivation of 
Darcy’s law in both saturated and  unsaturated 
media (Hu and Cushman 1994) has proven that 
the typical representation of Darcy’s law as a 
local Fick’s law is incomplete. The general form 
of Darcy’s law implies non-local transport over a 
wide range of scales (Paradisi et al. 2001). At the 
hillslope scale the larger-scale moisture transport 
process might be the dominant transport and 
cannot be explained by local observations and 
the calibration of local processes. This might 
partly explain why physically-based, spatially 
distributed hydrologic models outputs are still 
at odds with field observations (Kirchner 2003, 
2006), especially in ungaged basins (Sivapalan 
2003). Simple hydrological models are still able to 
perform better than detailed distributed hydrologic 
models (Kirchner 2009) and have many less 
parameters to tune.

The atmospheric boundary layer is the lower 
part of the atmosphere directly influenced by the 
diurnal cycle of turbulent heat fluxes. Historically, 
heat, moisture, and momentum transports in the 
atmospheric boundary layer were first modeled 
using diffusive formulations (Fick’s law). Those 
formulations were however unable to explain 
observations within the boundary layer (non-zero 
heat flux transport along with zero gradients, 
which contradict a diffusive transport). In fact 
it was well known that atmospheric turbulence 
exhibit a wide range of scales from characteristic 
dissipation scales (~cm) to the depth of the 
boundary layer (~km) (Kolmogorov 1941).  Of 
course, the explicit representation of boundary 
layer turbulence remains a challenge since 
computational power is insufficient to capture all 
the scales observed in turbulence. The inclusion of 
a non-local, convective term in the boundary layer 

led to fundamental advancements in our capacity 
to accurately predict the state of the boundary layer 
as well as cloud development (Deardorff 1966; 
Troen and Mahrt 1986; Holtslag and Moeng 1991; 
Siebesma et al. 2007; Neggers et al. 2009).

Scale Discrepancy between Obersvations and 
Modeling

One of the major challenges facing surface 
hydrology is the discrepancy between the models 
and observations against which validation occurs. 
A schematic comparison of these is depicted in 
Figures 1 and 2. Overlapping colors represent 
overlapping space-time scales of the different 
processes and/or measurements. 

Hydrologic processes operate across a wide 
range of scales and are interacting with other 
processes across this range. The observational 
scales do not generally match the scales of the 
process modeling (Figure 2). For instance, soil 
moisture values from coupled (land-surface and 
atmospheric) numerical weather prediction and 
climate models are usually obtained at scales of 
20-30 km and 100 km, respectively. By contrast, 
observations of soil moisture are usually obtained 
at a point using a gravimetric method or a probe, 
and multiple measurements must be performed 
to sample a larger area.  Even with multiple 
sampling the total areal extent covered by a set of 
measurements is usually very small (1 ha or less). 
Further, it often reflects a very shallow layer of the 
soil (first few centimeters). Serious doubts can be 
cast on the representativeness of such measurements 
compared to the much larger scales from models. 
By default, soil moisture model outputs are still 
often compared to local observations, even though 
basic central limit theorem implies that a coarser 
soil moisture resolution may lose some physical 
behavior, since some of the dynamics will be 
averaged out. 

A promising path toward systematic observations 
of soil moisture at a scale compatible with weather 
forecast models is currently underway with new 
or upcoming, satellite-borne L-band microwave 
observing systems (Soil Moisture Ocean Salinity, 
launched Nov. 2009: Kerr et al. 2010 and Soil 
Moisture Active Passive missions, launch date 
Nov. 1 2014: Entekhabi et al. 2010). There are still 
important challenges toward the operational use of 
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satellite measurements in comparison with model 
outputs, or to constrain the model outputs’ data 
assimilation (Reichle et al. 2002; Crow and Wood 
2003; Margulis et al. 2006; Reichle et al. 2007; Pan 
et al. 2009).  Indeed these platforms do not directly 
measure soil moisture but measure the microwave 
brightness temperature, which can be related in a 
non-trivial way to soil moisture. The algorithms 
relating those measurements to soil moisture are 
still in their infancy (Entekhabi et al. 2010).  In 
addition, the coarse-scale representation of surface 
hydrological processes, landscape heterogeneities, 
nonlinearities in the transport processes, and 
reduced details of the topography in land-surface 
models can introduce systematic biases in the 
representation of the area-averaged soil moisture 
state (Maxwell et al. 2007; Weigel et al. 2007). 
Hence, even with perfect measurements, a coarse-
grid representation of the processes will usually be 
insufficient to accurately describe the dynamics of 

the area-averaged soil moisture.
Similarly turbulent heat fluxes are usually 

measured at a relatively small scale (about 10-
100 m with eddy-correlation or Bowen ratio 
measurements of 1-2 km with scintillometers, 
Chehbouni 2000). The development of a global 
network of flux observation stations (Baldocchi et 
al. 2001) has led to fundamental improvement of 
our understanding of the exchange of momentum, 
heat and moisture across the surface, vegetation 
and the atmosphere interface. However, the scale 
at which flux site measurements are obtained 
cannot directly be compared to the outputs of land-
surface models within current generation weather 
or climate models. Heterogeneities in vegetation 
cover, for example, can drastically influence the 
turbulent heat fluxes at the land surface, especially 
at the meso-scale (5 to 100 km) and even the 
precipitation process (Avissar and Pielke 1989; 
Chen and Avissar 1994; Li and Avissar 1994; 

Figure 2.  Spatial and temporal scales of hydrological measurements.
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Lynn et al. 1995; Avissar 1995; Avissar and 
Schmidt 1998; Roy et al. 2003; Taylor et al. 2011). 
Development of new theories specifically geared 
toward systematic description of turbulent heat 
fluxes as a function of scale are needed (Jacobson 
1999; Pielke 2002; Nappo 2002).

One of the major challenges restricting the 
development of new theories for soil moisture and 
turbulent heat fluxes at a weather or climate model 
scale (10-100 km) is the need for the creation of 
large-scale surface hydrology field campaigns. In 
such field campaigns all components of the surface 

Figure 3.  From Maxwell et al. 2007, Advances in Water Resources Copyright.  Modeled time series of soil mositure 
field sampled every 12 hours using a fully coupled model (subsurface hydrology (ParFlow)-land surface atmosphere 
(ARPS).  Left panels were initialized with a fully coupled spin-up procedure.  Right panels were initialized using soil 
moisture interpolated from the North America Regional Reanalysis dataset.
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hydrologic cycle would be evaluated at several 
scales, from local (10-100 m) to the largest one 
(10-100 km). Such an experiment would allow 
for the determination of scaling properties as the 
size of the experiment is increased. This would 
potentially help develop our understating of the 
non-local transport laws (see previous section) and 
thus reduce the gap in our understanding of the 
physical processes taking place at the hillslope and 
watershed level. Substantial scientific and financial 
resources are required to achieve the goal of 
reconciling the observed and modeled hydrologic 
scales, as initiated by several hydrologic-related 
programs (e.g., International Hydrological 
Programme, Global Energy and Water Cycle, 
Terrestrial Regional North American Hydroclimate 
Experiment workshop).

Another major problem is related to the 
discrepancy between the temporal scales of the 
physical processes, the temporal resolution of the 
numerical models, and the observed scales (see 
Figure 1 and 2). Compared to the spatial scales, 
the capacity to represent the smallest time scales 
(hours to minutes) has advanced significantly 
in recent years with the increase in computing 
power. Still, a common problem is that models 
are calibrated for one purpose at one time scale, 
but then used for a variety of purposes across 
multiple scales. For instance, a model can be 
calibrated to match monthly streamflow and then 
used for flood forecasting, which happens at the 
daily scale. The opposite can be true as well, where 
the model will be calibrated for short time periods 
and then directly used as such in climate models. 
Slow drift might occur on seasonal and yearly 
time scales, which might be loosely constrained 
by the short-term observations. The lack of long-
term data to estimate slow land-surface processes 
remains a major problem of the field. At this stage, 
stream flow and pan evaporation are the only data 
available on scales of decades.

Toward a Systematic Scaling 
Framework

We identify four methodologies required 
to achieve robust, objective scaling of surface 
hydrologic laws.

Identification of Critical Scales

A first step toward accurately defining the 
surface hydrologic laws at a given scale is the 
definition of critical scales. By critical scales we 
mean scales that are relatively well defined in the 
surface hydrologic processes and their equations 
and that should be used as reference values in their 
equations when up or down scaling. For instance, 
meso-scale landscape heterogeneities introduce a 
breeze effect between dry, hot patches and cool, 
humid patches (Avissar and Pielke 1989; Chen and 
Avissar 1994; Li and Avissar 1994; Lynn et al. 1995; 
Avissar 1995; Avissar and Schmidt 1998; Roy et al. 
2003) at scales imposed by the landscape (5-100 
km). Currently, most so-called mosaic approaches 
trying to aggregate surface heterogeneity into 
larger-scale climate models only use a statistical 
approach. The entire area is divided into fractional 
cover (i.e., a number between 0 and 1) without 
spatial information. However, the shape of the 
landscape fundamentally determines the meso-
scale circulation and heat fluxes. This circulation 
depends on the geometry of the heterogeneities 
(Wang et al. 1998) and has, for example, important 
implications for deforestation studies. 

Within the boundary layer, theoretical concepts, 
such as the blending height, defined as the level 
inside the planetary boundary layer above which 
the flow becomes horizontally homogeneous 
in the absence of other influences (Wieringa 
1986), could be used to define a critical scale 
for the averaging of surface heterogeneities in a 
more rigorous way (Raupach and Finngan 1995; 
Mahrt 2000; Molod et al. 2003; Bou-Zeid et al. 
2004). Rigorous definitions of the critical scales, 
which play a major role in the heat and moisture 
transport, in the soil, and in the boundary at the 
land surface, are a requirement for the development 
of accurate scaling of surface hydrologic variables 
and meaningful representation of those variables 
across scales. 

Identification of Scale Invariances

In some cases it may not be possible to define 
critical scales. Instead, the processes take place 
over a large, continuous range of scales, as is 
the case for turbulence depicted in Figure 4. 
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Substantial progress in the comprehension of the 
origins of scale invariance and power-law structure 
has been realized in hydrologic problems in the 
last few decades pertaining to a large class of 
problems: cloud structure; landscape, vegetation 
and river network organizations; atmospheric 
turbulence; and sediment transport. (Kolmogorov 
1941; Lovejoy and Schertzer 1985; Schertzer and 
Lovejoy 1987; Lovejoy et al. 1987; Tarboton et 
al. 1988; Lovejoy and Schertzer 1990; Rodrı́guez-
Iturbe et al. 1992; Tessier et al. 1993; Rodrı́guez-
Iturbe  and Rinaldo 1997; Schertzer et al. 1997;  
Cieplak et al. 1998; Sposito 1998; Rodrı́guez-
Iturbe et al a, b 1998; D’Odorico and Rodrı́guez-
Iturbe 2000; D’Odorico and Rodrı́guez-Iturbe 
2000; Lovejoy and Schertzer 2006; Paola et al. 
2006; Scanlon et al. 2007; Stark et al. 2009; 
Foufoula-Georgiou et al. 2010; Schertzer et 
al. 2010). At present, few of these conceptual 
developments have been integrated in hydrologic 
models, yet they are required for sound hydrologic 
prediction across scales from the smallest (at a 
point) to the largest (hillslope and watersheds). 
In many instances, models are overparameterized 
and calibrated for the local scale but are used at a 
larger scale. However, local scale models cannot 
fundamentally work at a larger scale since many 
processes operating at these larger scales are not 

correctly represented (e.g., non-local transport, 
large scale organization).

Coupled Systems

Historically, meteorologists and hydrologists 
have attempted to first develop uncoupled models. 
Such models aim to isolate one process of interest 
(e.g., unsaturated zone, runoff). However, like 
other complex systems, the earth system as a 
whole may exhibit emergent behaviors, which 
are different from the behavior of its constitutive 
systems taken alone. These emergent behaviors 
may introduce new spatial and temporal scales 
that are otherwise not evident from the study of 
individual subsystems. Examples of emergent 
behaviors in nature include fish schooling or 
avalanche dynamics. Recent examples of the 
emergence of new spatial and temporal scales 
have been demonstrated in surface hydrology 
(e.g., McDonnell et al. 2007; Gentine et al. 2010, 
2011). These behaviors are not the result of chance 
alone, but are based on the interconnectivity 
between the subsystems of the global Earth system 
and are governed by fundamental principles 
which constrain the organization of the smaller-
scale subsystems (e.g.,  energy minimization, 
minimum or maximum entropy). It is evident that 
the interconnectivity between the constitutive 
elements is at least as important as their respective 
constitutive behavior to external forcing. Their 
coherent response can lead to specific spatial and 
temporal scales with possible self-organization 
across a wide range of scales including phase 
transition, (i.e., abrupt change from one state to 
another). 

Consequently, the study of the surface hydrologic 
system as coupled dynamical subsystems should 
unravel new time scales of interest, which are not 
apparent with current uncoupled subsystems and 
should help inform the design of new observing 
system and new field campaigns.

Derivation of Up/Downscaling Laws: 
Micro/Macroscale Equations

Based on the previous definition of critical 
scales and scale invariance, careful development of 
scaling hydrologic laws should be undertaken with 
explicit dependence on the scale considered. Only 
within such a framework would we have surface 

Figure 4.  Kolmogorov turbulent cascade.  The energy 
spectrum E(K) is plotted as a function of the wavelength 
k.  In the inertial range the energy spectrum follows a 
power law with 5/3 exponent.
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hydrologic models that are seamless and valid 
across different scales, interchangeably. Several 
methodologies have been developed to understand 
the effect of scaling from the micro- (local 1-10 m) 
to macro-scale (1 km or more) (Govindaraju et al. 
1990; Chen et al. 1994a and 1994b; Sposito 1998; 
Western and Blöschl 1999; Bierkens  et al. 2000; 
Anderson et al. 2003; Pachepsky and Radcliffe 
2003; Kavvas 2003; Kim et al. 2005; Kim and 
Kavavs 2006; Haltas and Kavvas 2011). Careful 
definitions of the relationship between micro- 
and macro-scale laws should allow fundamental 
progresses in our capacity to predict the surface 
hydrologic state and flows.

Conclusions
Temporal and spatial scaling remains a 

fundamental challenge in surface hydrology, so 
that predictions made with numerical models 
become sufficiently reliable to be of practical 
value to end users (e.g., flood/drought forecasters, 
water resources managers, dam operators, 
hydropower managers, and ecological monitors). 
Substantial challenges still exist. Among 
these, the heterogeneities and nonlinearities of 
surface hydrological processes have to be better 
characterized and represented in our mathematical 
models. Efforts should also be directed toward 
understanding non-local transport processes, 
which fundamentally shape the hydrological 
response observed at the watershed scale. 

Of course, one key difficulty in the development 
and validation of new theories is the discrepancy 
between the processes and observations. In the 
short-term new field campaigns should be designed 
to address and resolve our understanding of some 
of the missing scales, with further resources 
devoted to the design of new observing platforms 
and campaigns over a longer time frame.

In order to systematically address the effect of 
up- and downscaling on hydrological processes, we 
believe that four steps are necessary. First, critical 
scales of the system should be defined whenever 
possible and constitutive laws should explicitly 
include those scales (e.g., boundary-layer blending 
height, heterogeneity scale(s)).  Scale invariance 
should be exploited and invariant scale parameters 
(e.g., fractal structure) defined. Moreover, surface 

hydrologic systems should be viewed as systems 
comprising coupled dynamical subsystems, with 
the coupling altering the dynamics of the entire 
system through mutual interactions and emergent 
behavior. Finally, careful derivation of upscaling 
and downscaling physical laws based should 
be considered based on rigorous mathematical 
methods (e.g., homogenization techniques) and 
physical constraints (e.g., conservation laws).

In many end use applications, hydrologic 
models are treated as black boxes; they may, for 
example, be applied across scales even if they were 
initially developed to work at a particular scale 
(e.g., climate model grid size). In addition, some 
of the model prognostic equations were direct 
adaptations of observations at other scales because 
of the lack of data at the scale of interest. The 
fantastic development of our monitoring capacity 
(e.g., remote sensing) in the last few decades should 
be used not only to constrain hydrologic models, 
but also to verify the assumptions underlying 
those models. The surface hydrologic community 
should thus embark on important developments 
of the theories underlying the models. Systematic 
redefinition of our hydrologic models with 
an explicit scale dependence and validation 
against those observations should help reconcile 
hydrologic predictions with field observations.
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