6,305 research outputs found
Exact Scaling Functions for Self-Avoiding Loops and Branched Polymers
It is shown that a recently conjectured form for the critical scaling
function for planar self-avoiding polygons weighted by their perimeter and area
also follows from an exact renormalization group flow into the branched polymer
problem, combined with the dimensional reduction arguments of Parisi and
Sourlas. The result is generalized to higher-order multicritical points,
yielding exact values for all their critical exponents and exact forms for the
associated scaling functions.Comment: 5 pages; v2: factors of 2 corrected; v.3: relation with existing
theta-point results clarified, some references added/update
Drying and Other Related Properties of Western Hemlock Sinker Heartwood
Sinker heartwood dries more slowly than normal heartwood of western hemlock. Extraction with ethanol or acetone and presteaming improved the rate of drying of sinker heart-wood. Electron microscopy was used to examine bordered pits in normal and sinker heartwood and extracted specimens of sinker heartwood. Parallel capacitance was lowest in sapwood, higher in normal heartwood, and highest in sinker heartwood. The range in capacitance was related to total extractive content at similar moisture contents
Longitudinal Water Permeability of Western Hemlock. I. Steady-State Permeability
Average initial permeability to water of sapwood was found to be 9.6 X 10-10 cm2, that of wetwood from heartwood was 6.64 X 10-10 cm2, and that of normal heartwood was 4.4 X 10-12 cm2. All the specimens were never-dried, approximately 0.95 cm in diameter and 2 cm long, and were embedded in a lucite tube using epoxy resin as binder.Using polyethylene glycol 1000 as an embedding agent, 23% of sapwood pits, 42% of pits in wetwood from heartwood, and 84% of pits in normal heartwood were found to be aspirated. Scanning electron microscopy revealed that the normal heartwood of freeze-dried heartwood was heavily incrusted, but that of wetwood was relatively free of incrustation. High water permeability of wet heartwood was attributed to a low level of pit aspiration and freedom from incrustation.Both sapwood and wetwood exhibited deterioration of permeability with time. In sapwood the cause was considered to be time-dependent pit aspiration because of hydrostatic pressure differentials during testing, but in wetwood the deterioration was attributed to extractives transported by water and deposited on pit membranes to form an impermeable coat of film.A further proposal is that formation of wet pockets during drying of western hemlock lumber is caused by formation of an impermeable zone from the incrustation of pits by extractives during the migration of water, which traps the moisture in lumber
Integrating biological knowledge into variable selection : an empirical Bayes approach with an application in cancer biology
Background:
An important question in the analysis of biochemical data is that of identifying subsets of molecular variables that may jointly influence a biological response. Statistical variable selection methods have been widely used for this purpose. In many settings, it may be important to incorporate ancillary biological information concerning the variables of interest. Pathway and network maps are one example of a source of such information. However, although ancillary information is increasingly available, it is not always clear how it should be used nor how it should be weighted in relation to primary data.
Results:
We put forward an approach in which biological knowledge is incorporated using informative prior distributions over variable subsets, with prior information selected and weighted in an automated, objective manner using an empirical Bayes formulation. We employ continuous, linear models with interaction terms and exploit biochemically-motivated sparsity constraints to permit exact inference. We show an example of priors for pathway- and network-based information and illustrate our proposed method on both synthetic response data and by an application to cancer drug response data. Comparisons are also made to alternative Bayesian and frequentist penalised-likelihood methods for incorporating network-based information.
Conclusions:
The empirical Bayes method proposed here can aid prior elicitation for Bayesian variable selection studies and help to guard against mis-specification of priors. Empirical Bayes, together with the proposed pathway-based priors, results in an approach with a competitive variable selection performance. In addition, the overall procedure is fast, deterministic, and has very few user-set parameters, yet is capable of capturing interplay between molecular players. The approach presented is general and readily applicable in any setting with multiple sources of biological prior knowledge
Potential Vorticity Evolution of a Protoplanetary Disk with An Embedded Protoplanet
We present two-dimensional inviscid hydrodynamic simulations of a
protoplanetary disk with an embedded planet, emphasizing the evolution of
potential vorticity (the ratio of vorticity to density) and its dependence on
numerical resolutions. By analyzing the structure of spiral shocks made by the
planet, we show that progressive changes of the potential vorticity caused by
spiral shocks ultimately lead to the excitation of a secondary instability. We
also demonstrate that very high numerical resolution is required to both follow
the potential vorticity changes and identify the location where the secondary
instability is first excited. Low-resolution results are shown to give the
wrong location. We establish the robustness of a secondary instability and its
impact on the torque onto the planet. After the saturation of the instability,
the disk shows large-scale non-axisymmetry, causing the torque on the planet to
oscillate with large amplitude. The impact of the oscillating torque on the
protoplanet's migration remains to be investigated.Comment: 17 pages total with 9 figures (Fig.4,5,9 are in .jpg), accepted to
Ap
Dissociation cross sections of ground-state and excited charmonia with light mesons in the quark model
We present numerical results for the dissociation cross sections of
ground-state, orbitally- and radially-excited charmonia in collisions with
light mesons. Our results are derived using the nonrelativistic quark model, so
all parameters are determined by fits to the experimental meson spectrum.
Examples of dissociation into both exclusive and inclusive final states are
considered. The dissociation cross sections of several C=(+) charmonia may be
of considerable importance for the study of heavy ion collisions, since these
states are expected to be produced more copiously than the J/psi. The relative
importance of the productions of ground-state and orbitally-excited charmed
mesons in a pion-charmonium collision is demonstrated through the -dependent charmonium dissociation cross sections.Comment: 9 pages, 8 figure
LSR/angulin-1 is a tricellular tight junction protein involved in blood-brain barrier formation.
The blood-brain barrier (BBB) is a term used to describe the unique properties of central nervous system (CNS) blood vessels. One important BBB property is the formation of a paracellular barrier made by tight junctions (TJs) between CNS endothelial cells (ECs). Here, we show that Lipolysis-stimulated lipoprotein receptor (LSR), a component of paracellular junctions at points in which three cell membranes meet, is greatly enriched in CNS ECs compared with ECs in other nonneural tissues. We demonstrate that LSR is specifically expressed at tricellular junctions and that its expression correlates with the onset of BBB formation during embryogenesis. We further demonstrate that the BBB does not seal during embryogenesis in Lsr knockout mice with a leakage to small molecules. Finally, in mouse models in which BBB was disrupted, including an experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis and a middle cerebral artery occlusion (MCAO) model of stroke, LSR was down-regulated, linking loss of LSR and pathological BBB leakage
- …