258 research outputs found

    Exponential Estimates and Stabilization of Discrete-Time Singular Time-Delay Systems Subject to Actuator Saturation

    Get PDF
    This paper is concerned with exponential estimates and stabilization of a class of discrete-time singular systems with time-varying state delays and saturating actuators. By constructing a decay-rate-dependent Lyapunov-Krasovskii function and utilizing the slow-fast decomposition technique, an exponential admissibility condition, which not only guarantees the regularity, causality, and exponential stability of the unforced system but also gives the corresponding estimates of decay rate and decay coefficient, is derived in terms of linear matrix inequalities (LMIs). Under the proposed condition, the exponential stabilization problem of discrete-time singular time-delay systems subject actuator saturation is solved by designing a stabilizing state feedback controller and determining an associated set of safe initial conditions, for which the local exponential stability of the saturated closed-loop system is guaranteed. Two numerical examples are provided to illustrate the effectiveness of the proposed results

    Nanoscale Bandgap Tuning across an Inhomogeneous Ferroelectric Interface

    Full text link
    We report nanoscale bandgap engineering via a local strain across the inhomogeneous ferroelectric interface, which is controlled by the visible-light-excited probe voltage. Switchable photovolatic effects and the spectral response of the photocurrent were explore to illustrate the reversible bandgap variation (~0.3eV). This local-strain-engineered bandgap has been further revealed by in situ probe-voltage-assisted valence electron energy-loss spectroscopy (EELS). Phase-field simulations and first-principle calculations were also employed for illustration of the large local strain and the bandgap variation in ferroelectric perovskite oxides. This reversible bandgap tuning in complex oxides demonstrates a framework for the understanding of the opticallyrelated behaviors (photovoltaic, photoemission, and photocatalyst effects) affected by order parameters such as charge, orbital, and lattice parameters

    Learning Modal-Invariant and Temporal-Memory for Video-based Visible-Infrared Person Re-Identification

    Full text link
    Thanks for the cross-modal retrieval techniques, visible-infrared (RGB-IR) person re-identification (Re-ID) is achieved by projecting them into a common space, allowing person Re-ID in 24-hour surveillance systems. However, with respect to the probe-to-gallery, almost all existing RGB-IR based cross-modal person Re-ID methods focus on image-to-image matching, while the video-to-video matching which contains much richer spatial- and temporal-information remains under-explored. In this paper, we primarily study the video-based cross-modal person Re-ID method. To achieve this task, a video-based RGB-IR dataset is constructed, in which 927 valid identities with 463,259 frames and 21,863 tracklets captured by 12 RGB/IR cameras are collected. Based on our constructed dataset, we prove that with the increase of frames in a tracklet, the performance does meet more enhancement, demonstrating the significance of video-to-video matching in RGB-IR person Re-ID. Additionally, a novel method is further proposed, which not only projects two modalities to a modal-invariant subspace, but also extracts the temporal-memory for motion-invariant. Thanks to these two strategies, much better results are achieved on our video-based cross-modal person Re-ID. The code and dataset are released at: https://github.com/VCMproject233/MITML

    No Detectable Maternal Effects of Elevated CO2 on Arabidopsis thaliana Over 15 Generations

    Get PDF
    Maternal environment has been demonstrated to produce considerable impact on offspring growth. However, few studies have been carried out to investigate multi-generational maternal effects of elevated CO2 on plant growth and development. Here we present the first report on the responses of plant reproductive, photosynthetic, and cellular characteristics to elevated CO2 over 15 generations using Arabidopsis thaliana as a model system. We found that within an individual generation, elevated CO2 significantly advanced plant flowering, increased photosynthetic rate, increased the size and number of starch grains per chloroplast, reduced stomatal density, stomatal conductance, and transpiration rate, and resulted in a higher reproductive mass. Elevated CO2 did not significantly influence silique length and number of seeds per silique. Across 15 generations grown at elevated CO2 concentrations, however, there were no significant differences in these traits. In addition, a reciprocal sowing experiment demonstrated that elevated CO2 did not produce detectable maternal effects on the offspring after fifteen generations. Taken together, these results suggested that the maternal effects of elevated CO2 failed to extend to the offspring due to the potential lack of genetic variation for CO2 responsiveness, and future plants may not evolve specific adaptations to elevated CO2 concentrations

    Transcriptome-wide identification and characterization of miRNAs from Pinus densata

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) play key roles in diverse developmental processes, nutrient homeostasis and responses to biotic and abiotic stresses. The biogenesis and regulatory functions of miRNAs have been intensively studied in model angiosperms, such as <it>Arabidopsis thaliana</it>, <it>Oryza sativa </it>and <it>Populus trichocarpa</it>. However, global identification of <it>Pinus densata </it>miRNAs has not been reported in previous research.</p> <p>Results</p> <p>Here, we report the identification of 34 conserved miRNAs belonging to 25 miRNA families from a <it>P. densata </it>mRNA transcriptome database using local BLAST and MIREAP programs. The primary and/or precursor sequences of 29 miRNAs were further confirmed by RT-PCR amplification and subsequent sequencing. The average value of the minimal folding free energy indexes of the 34 miRNA precursors was 0.92. Nineteen (58%) mature miRNAs began with a 5' terminal uridine residue. Analysis of miRNA precursors showed that 19 mature miRNAs were novel members of 14 conserved miRNA families, of which 17 miRNAs were further validated by subcloning and sequencing. Using real-time quantitative RT-PCR, we found that the expression levels of 7 miRNAs were more than 2-fold higher in needles than in stems. In addition, 72 <it>P. densata </it>mRNAs were predicted to be targets of 25 miRNA families. Four target genes, including a nodal modulator 1-like protein gene, two GRAS family transcription factor protein genes and one histone deacetylase gene, were experimentally verified to be the targets of 3 <it>P. densata </it>miRNAs, pde-miR162a, pde-miR171a and pde-miR482a, respectively.</p> <p>Conclusions</p> <p>This study led to the discovery of 34 conserved miRNAs comprising 25 miRNA families from <it>Pinus densata</it>. These results lay a solid foundation for further studying the regulative roles of miRNAs in the development, growth and responses to environmental stresses in <it>P. densata</it>.</p

    Disruption of actin filaments induces mitochondrial Ca2+ release to the cytoplasm and [Ca2+]c changes in Arabidopsis root hairs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mitochondria are dynamic organelles that move along actin filaments, and serve as calcium stores in plant cells. The positioning and dynamics of mitochondria depend on membrane-cytoskeleton interactions, but it is not clear whether microfilament cytoskeleton has a direct effect on mitochondrial function and Ca<sup>2+ </sup>storage. Therefore, we designed a series of experiments to clarify the effects of actin filaments on mitochondrial Ca<sup>2+ </sup>storage, cytoplasmic Ca<sup>2+ </sup>concentration ([Ca<sup>2+</sup>]<sub>c</sub>), and the interaction between mitochondrial Ca<sup>2+ </sup>and cytoplasmic Ca<sup>2+ </sup>in <it>Arabidopsis </it>root hairs.</p> <p>Results</p> <p>In this study, we found that treatments with latrunculin B (Lat-B) and jasplakinolide (Jas), which depolymerize and polymerize actin filaments respectively, decreased membrane potential and Ca<sup>2+ </sup>stores in the mitochondria of <it>Arabidopsis </it>root hairs. Simultaneously, these treatments induced an instantaneous increase of cytoplasmic Ca<sup>2+</sup>, followed by a continuous decrease. All of these effects were inhibited by pretreatment with cyclosporin A (Cs A), a representative blocker of the mitochondrial permeability transition pore (mPTP). Moreover, we found there was a Ca<sup>2+ </sup>concentration gradient in mitochondria from the tip to the base of the root hair, and this gradient could be disrupted by actin-acting drugs.</p> <p>Conclusions</p> <p>Based on these results, we concluded that the disruption of actin filaments caused by Lat-B or Jas promoted irreversible opening of the mPTP, resulting in mitochondrial Ca<sup>2+ </sup>release into the cytoplasm, and consequent changes in [Ca<sup>2+</sup>]<sub>c</sub>. We suggest that normal polymerization and depolymerization of actin filaments are essential for mitochondrial Ca<sup>2+ </sup>storage in root hairs.</p

    Prognostic significance of circulating tumor cell measurement in the peripheral blood of patients with nasopharyngeal carcinoma

    Get PDF
    Objective: Nasopharyngeal Carcinoma (NPC) is lethal cancer. Typically, relapse and metastasis are the outcomes of most patients. Against this backdrop, this study aimed to investigate the correlation between Circulating Tumor Cell (CTC) profiles and clinicopathological features in patients with NPC. Patients and methods: A total of 119 blood samples from 79 patients were collected from patients with NPC during treatment. CanPatrolTM CTC enrichment and RNA In Situ Hybridization (RNA-ISH) were used to characterize CTCs, including epithelial, Mesenchymal (MCTCs), and epithelial/mesenchymal mixed types according to their surface markers. Results: The number of CTCs and MCTCs in the pre-treatment group was significantly higher than that in the post-treatment group (p &lt; 0.05). The total number of CTCs and MCTCs cell numbers was significant correlation with Tumor-Node-Metastasis (TNM) staging (p &lt; 0.05), Progression-Free Survival (PFS), and Overall Survival (OS). The PFS of patients with &gt; 7 CTCs or &gt; 5 MCTCs per 5 mL blood was significantly shorter PFS than those patients with ≤ 7 CTCs or ≤ 5 MCTCs (p &lt; 0.05). Patients treated with targeted therapy combined with chemoradiotherapy had poorer PFS and OS rates than those treated with chemoradiotherapy (p &lt; 0.05). The Kaplan-Meier survival analysis also demonstrated that patients with changes in CTC &gt; 4 were strongly associated with PFS and OS rates (p &lt; 0.05). Conclusion: CTC and MCTC number detection in patients with NPC is a useful biomarker for predicting patient progress. Patients with more than 7 CTCs or 5 MCTCs in 5 mL of blood had shorter PFS and OS rates. CTC and MCTC count changes were also significantly associated with the patient's therapy

    Golgi Apparatus-Localized Synaptotagmin 2 Is Required for Unconventional Secretion in Arabidopsis

    Get PDF
    BACKGROUND: Most secretory proteins contain signal peptides that direct their sorting to the ER and secreted via the conventional ER/Golgi transport pathway, while some signal-peptide-lacking proteins have been shown to export through ER/Golgi independent secretory pathways. Hygromycin B is an aminoglycoside antibiotic produced by Streptomyces hygroscopicus that is active against both prokaryotic and eukaryotic cells. The hygromycin phosphotransferase (HYG(R)) can phosphorylate and inactivate the hygromycin B, and has been widely used as a positive selective marker in the construction of transgenic plants. However, the localization and trafficking of HYG(R) in plant cells remain unknown. Synaptotagmins (SYTs) are involved in controlling vesicle endocytosis and exocytosis as calcium sensors in animal cells, while their functions in plant cells are largely unclear. METHODOLOGY/PRINCIPAL FINDINGS: We found Arabidopsis synaptotagmin SYT2 was localized on the Golgi apparatus by immunofluorescence and immunogold labeling. Surprisingly, co-expression of SYT2 and HYG(R) caused hypersensitivity of the transgenic Arabidopsis plants to hygromycin B. HYG(R), which lacks a signal sequence, was present in the cytoplasm as well as in the extracellular space in HYG(R)-GFP transgenic Arabidopsis plants and its secretion is not sensitive to brefeldin A treatment, suggesting it is not secreted via the conventional secretory pathway. Furthermore, we found that HYG(R)-GFP was truncated at carboxyl terminus of HYG(R) shortly after its synthesis, and the cells deficient SYT2 failed to efficiently truncate HYG(R)-GFP,resulting in HYG(R)-GFP accumulated in prevacuoles/vacuoles, indicating that SYT2 was involved in HYG(R)-GFP trafficking and secretion. CONCLUSION/SIGNIFICANCE: These findings reveal for the first time that SYT2 is localized on the Golgi apparatus and regulates HYG(R)-GFP secretion via the unconventional protein transport from the cytosol to the extracelluar matrix in plant cells

    Arabidopsis blue light receptor phototropin 1 undergoes blue light-induced activation in membrane microdomains

    Get PDF
    Phototropin (phot)-mediated signaling initiated by blue light (BL) plays a critical role in optimizing photosynthetic light capture at the plasma membrane (PM) in plants. However, the mechanisms underlying the regulation of phot activity at the PM in response to BL remain largely unclear. In this study, by single-particle tracking and step-wise photobleaching analysis we demonstrated that in the dark phot1-GFP proteins remain in an inactive state and mostly present as a monomer. The phot1-GFP diffusion rate and its dimerization increased in a dose-dependent manner in response to BL. In contrast, BL did not affect the lateral diffusion of kinase-inactive phot1 -GFP, whereas it did enhance its dimerization, suggesting that phot1 dimerization is independent of its phosphorylation. Förster resonance energy transfer-fluorescence lifetime imaging microscopy (FRET-FLIM) analysis revealed that the interaction between phot1-GFP and AtRem1.3-mCherry was enhanced along with increased time of BL treatment. However, the BL-dependent interaction was not obvious in plants co-expressing phot1 -GFP and AtRem1.3-mCherry, implicating that BL facilitated the translocation of functional phot1-GFP into AtRem1.3-labeled microdomains to activate phot-mediated signaling. Conversely, sterol depletion attenuated phot1-GFP dynamics, dimerization, and phosphorylation. Taken together, these results indicate that membrane microdomains act as an organizing platform essential for proper function of activated phot1 at the PM

    Actin Turnover Is Required for Myosin-Dependent Mitochondrial Movements in Arabidopsis Root Hairs

    Get PDF
    Background: Previous studies have shown that plant mitochondrial movements are myosin-based along actin filaments, which undergo continuous turnover by the exchange of actin subunits from existing filaments. Although earlier studies revealed that actin filament dynamics are essential for many functions of the actin cytoskeleton, there are little data connecting actin dynamics and mitochondrial movements. Methodology/Principal Findings: We addressed the role of actin filament dynamics in the control of mitochondrial movements by treating cells with various pharmaceuticals that affect actin filament assembly and disassembly. Confocal microscopy of Arabidopsis thaliana root hairs expressing GFP-FABD2 as an actin filament reporter showed that mitochondrial distribution was in agreement with the arrangement of actin filaments in root hairs at different developmental stages. Analyses of mitochondrial trajectories and instantaneous velocities immediately following pharmacological perturbation of the cytoskeleton using variable-angle evanescent wave microscopy and/or spinning disk confocal microscopy revealed that mitochondrial velocities were regulated by myosin activity and actin filament dynamics. Furthermore, simultaneous visualization of mitochondria and actin filaments suggested that mitochondrial positioning might involve depolymerization of actin filaments on the surface of mitochondria. Conclusions/Significance: Base on these results we propose a mechanism for the regulation of mitochondrial speed of movements, positioning, and direction of movements that combines the coordinated activity of myosin and the rate of actin turnover, together with microtubule dynamics, which directs the positioning of actin polymerization events.Publisher PDFPeer reviewe
    corecore