2,524 research outputs found

    The Gemini NICI Planet-Finding Campaign

    Full text link
    Our team is carrying out a multi-year observing program to directly image and characterize young extrasolar planets using the Near-Infrared Coronagraphic Imager (NICI) on the Gemini-South 8.1-meter telescope. NICI is the first instrument on a large telescope designed from the outset for high-contrast imaging, comprising a high-performance curvature adaptive optics system with a simultaneous dual-channel coronagraphic imager. Combined with state-of-the-art observing methods and data processing, NICI typically achieves ~2 magnitudes better contrast compared to previous ground-based or space-based programs, at separations inside of ~2 arcsec. In preparation for the Campaign, we carried out efforts to identify previously unrecognized young stars, to rigorously construct our observing strategy, and to optimize the combination of angular and spectral differential imaging. The Planet-Finding Campaign is in its second year, with first-epoch imaging of 174 stars already obtained out of a total sample of 300 stars. We describe the Campaign's goals, design, implementation, performance, and preliminary results. The NICI Campaign represents the largest and most sensitive imaging survey to date for massive (~1 Mjup) planets around other stars. Upon completion, the Campaign will establish the best measurements to date on the properties of young gas-giant planets at ~5-10 AU separations. Finally, Campaign discoveries will be well-suited to long-term orbital monitoring and detailed spectrophotometric followup with next-generation planet-finding instruments.Comment: Proceedings of the SPIE, vol 7736 (Advances in Adaptive Optics, San Diego, CA, June 2010 meeting), in pres

    The Gemini NICI Planet-Finding Campaign: The Frequency of Giant Planets Around Debris Disk Stars

    Full text link
    We have completed a high-contrast direct imaging survey for giant planets around 57 debris disk stars as part of the Gemini NICI Planet-Finding Campaign. We achieved median H-band contrasts of 12.4 mag at 0.5" and 14.1 mag at 1" separation. Follow-up observations of the 66 candidates with projected separation < 500 AU show that all of them are background objects. To establish statistical constraints on the underlying giant planet population based on our imaging data, we have developed a new Bayesian formalism that incorporates (1) non-detections, (2) single-epoch candidates, (3) astrometric and (4) photometric information, and (5) the possibility of multiple planets per star to constrain the planet population. Our formalism allows us to include in our analysis the previously known Beta Pictoris and the HR 8799 planets. Our results show at 95% confidence that 5MJup planet beyond 80 AU, and 3MJup planet outside of 40 AU, based on hot-start evolutionary models. We model the population of directly-imaged planets as d^2N/dMda ~ m^alpha a^beta, where m is planet mass and a is orbital semi-major axis (with a maximum value of amax). We find that beta 1.7. Likewise, we find that beta < -0.8 and/or amax < 200 AU. If we ignore the Beta Pic and HR 8799 planets (should they belong to a rare and distinct group), we find that 3MJup planet beyond 10 AU, and beta < -0.8 and/or alpha < -1.5. Our Bayesian constraints are not strong enough to reveal any dependence of the planet frequency on stellar host mass. Studies of transition disks have suggested that about 20% of stars are undergoing planet formation; our non-detections at large separations show that planets with orbital separation > 40 AU and planet masses > 3 MJup do not carve the central holes in these disks.Comment: Accepted to ApJ on June 24, 2013. 67 pages, 17 figures, 12 table

    Merging Galaxies in the SDSS EDR

    Full text link
    We present a new catalog of merging galaxies obtained through an automated systematic search routine. The 1479 new pairs of merging galaxies were found in approximately 462 sq deg of the Sloan Digital Sky Survey Early Data Release (SDSS EDR; Stoughton et al. 2002) photometric data, and the pair catalog is complete for galaxies in the magnitude range 16.0 <= g* <= 20. The selection algorithm, implementing a variation on the original Karachentsev (1972) criteria, proved to be very efficient and fast. Merging galaxies were selected such that the inter-galaxy separations were less than the sum of the component galaxies' radii. We discuss the characteristics of the sample in terms of completeness, pair separation, and the Holmberg effect. We also present an online atlas of images for the SDSS EDR pairs obtained using the corrected frames from the SDSS EDR database. The atlas images also include the relevant data for each pair member. This catalog will be useful for conducting studies of the general characteristics of merging galaxies, their environments, and their component galaxies. The redshifts for a subset of the interacting and merging galaxies and the distribution of angular sizes for these systems indicate the SDSS provides a much deeper sample than almost any other wide-area catalog to date.Comment: 58 pages, which includes 15 figures and 6 tables. Figures 2, 8, 9, 10, 11, 13, and 14 are provided as JPEG files. For online atlas, see http://home.fnal.gov/~sallam/MergePair/ . Accepted for publication in A

    Relationship Between Dispersion Metric and Properties of PMMA/SWNT Nanocomposites

    Get PDF
    Particle spatial dispersion is a crucial characteristic of polymer composite materials and this property is recognized as especially important in nanocomposite materials due to the general tendency of nanoparticles to aggregate under processing conditions. We introduce dispersion metrics along with a specified dispersion scale over which material homogeneity is measured and consider how the dispersion metrics correlate quantitatively with the variation of basic nanocomposite properties. We then address the general problem of quantifying nanoparticle spatial dispersion in model nanocomposites of single wall carbon nanotubes (SWNT) dispersed in poly(methyl methacrylate) (PMMA) at a fixed SWNT concentration of 0.5 % using a \u27coagulation\u27 fabrication method. Two methods are utilized to measure dispersion, UV-Vis spectroscopy and optical confocal microscopy. Quantitative spatial dispersion levels were obtained through image analysis to obtain a \u27relative dispersion index\u27 (RDI) representing the uniformity of the dispersion of SWNTs in the samples and through absorbance. We find that the storage modulus, electrical conductivity, and flammability containing the same amount of SWNTs, the relationships between the quantified dispersion levels and physical properties show about four orders of magnitude variation in storage modulus, almost eight orders of magnitude variation in electric conductivity, and about 70 % reduction in peak mass loss rate at the highest dispersion level used in this study. The observation of such a profound effect of SWNT dispersion indicates the need for objective dispersion metrics for correlating and understanding how the properties of nanocomposites are determined by the concentration, shape and size of the nanotubes

    D-branes as GMS Solitons in Vacuum String Field Theory

    Full text link
    In this paper we map the D-brane projector states in the vacuum string field theory to the noncommutative GMS solitons based on the recently proposed map of Witten's star to Moyal's star. We find that the singular geometry conditions of Moore and Taylor are associated with the commutative modes of these projector states in our framework. The properties of the candidate closed string state and the wedge state are also discussed, and the possibility of the non-GMS soliton in VSFT is commented.Comment: 19 pages, LaTex; revised version, typos corrected; third version, a new subsection about the midpoint singulariy regularization added;fourth edition, arguments improve

    Cubic String Field Theory in pp-wave Background and Background Independent Moyal Structure

    Full text link
    We study Witten open string field theory in the pp-wave background in the tensionless limit, and construct the N-string vertex in the basis which diagonalizes the string perturbative spectrum. We found that the Witten *-product can be viewed as infinite copies of the Moyal product with the same noncommutativity parameter Ξ=2\theta=2. Moreover, we show that this Moyal structure is universal in the sense that, written in the string bit basis, Witten's *-product for any background can always be given in terms of the above-mentioned Moyal structure. We identify some projective operators in this algebra that we argue to correspond to D-branes of the theory.Comment: Latex, 23 pages, reference adde

    Precision Needle-Punch Tumor Enrichment From Paraffin Blocks Improves the Detection of Clinically Actionable Genomic Alterations and Biomarkers

    Get PDF
    BACKGROUND: While many molecular assays can detect mutations at low tumor purity and variant allele frequencies, complex biomarkers such as tumor mutational burden (TMB), microsatellite instability (MSI), and genomic loss of heterozygosity (gLOH) require higher tumor purity for accurate measurement. Scalable, quality-controlled, tissue-conserving methods to increase tumor nuclei percentage (TN%) from tumor specimens are needed for complex biomarkers and hence necessary to maximize patient matching to approved therapies or clinical trial enrollment. We evaluated the clinical utility and performance of precision needle-punch enrichment (NPE) compared with traditional razor blade macroenrichment of tumor specimens on molecular testing success. METHODS: Pathologist-directed NPE was performed manually on formalin-fixed, paraffin embedded (FFPE) blocks. Quality control of target capture region and quantity of residual tumor in each tissue block was determined via a post-enrichment histologic slide recut. Resultant tumor purity and biomarker status were determined by the computational analysis pipeline component of the FDA-approved next-generation sequencing (NGS) assay, FoundationOne RESULTS: In real-world clinical samples, enrichment rate via NPE was increased to ~50% over a 2.5-year period, exceeding the prior use of razor blade macro-enrichment ( CONCLUSIONS: Pathologist-directed precision enrichment from tissue blocks (aka NPE) increases tumor purity, and consequently, yields a greater number of successful tests and complex biomarker determinations. Moreover, this process is rapid, safe, inexpensive, scalable, and conserves patient surgical pathology material. NPE may constitute best practice with respect to enriching tumor cells from low-purity specimens for biomarker detection in molecular laboratories

    Isospin Multiplet Structure in Ultra--Heavy Fermion Bound States

    Full text link
    The coupled Bethe--Salpeter bound state equations for a QQˉQ\bar Q system, where Q=(U,D)Q=(U,D) is a degenerate, fourth generation, super--heavy quark doublet, are solved in several ladder approximation models. The exchanges of gluon, Higgs and Goldstone modes in the standard model are calculated in the ultra--heavy quark limit where weak Îł,W±\gamma, W^\pm and Z0Z^0 contributions are negligible. A natural I=0I=0 and I=1I=1 multiplet pattern is found, with large splittings occuring between the different weak iso--spin states when MQM_Q, the quark masses, are larger than values in the range 0.4TeV<MQ<0.8TeV0.4 TeV<M_Q<0.8 TeV, depending on which model is used. Consideration of ultra--heavy quark lifetime constraints and U−DU-D mass splitting constraints are reviewed to establish the plausibility of lifetime and mass degeneracy requirements assumed for this paper.Comment: 20 pages, 7 figures (hard copy available upon request), report# KU-HEP-93-2

    Projection methods in conic optimization

    Get PDF
    There exist efficient algorithms to project a point onto the intersection of a convex cone and an affine subspace. Those conic projections are in turn the work-horse of a range of algorithms in conic optimization, having a variety of applications in science, finance and engineering. This chapter reviews some of these algorithms, emphasizing the so-called regularization algorithms for linear conic optimization, and applications in polynomial optimization. This is a presentation of the material of several recent research articles; we aim here at clarifying the ideas, presenting them in a general framework, and pointing out important techniques

    Noncommutative Electromagnetism As A Large N Gauge Theory

    Full text link
    We map noncommutative (NC) U(1) gauge theory on R^d_C X R^{2n}_{NC} to U(N -> \infty) Yang-Mills theory on R^d_C, where R^d_C is a d-dimensional commutative spacetime while R^{2n}_{NC} is a 2n-dimensional NC space. The resulting U(N) Yang-Mills theory on R^d_C is equivalent to that obtained by the dimensional reduction of (d+2n)-dimensional U(N) Yang-Mills theory onto R^d_C. We show that the gauge-Higgs system (A_\mu,\Phi^a) in the U(N -> \infty) Yang-Mills theory on R^d_C leads to an emergent geometry in the (d+2n)-dimensional spacetime whose metric was determined by Ward a long time ago. In particular, the 10-dimensional gravity for d=4 and n=3 corresponds to the emergent geometry arising from the 4-dimensional N=4 vector multiplet in the AdS/CFT duality. We further elucidate the emergent gravity by showing that the gauge-Higgs system (A_\mu,\Phi^a) in half-BPS configurations describes self-dual Einstein gravity.Comment: 25 pages; More clarifications, to appear in Eur. Phys. J.
    • 

    corecore