1,723 research outputs found

    Neutralizing human monoclonal antibody against H5N1 influenza HA selected from a Fab-phage display library

    Get PDF
    Identification of neutralizing antibodies with specificity away from the traditional mutation prone antigenic regions, against the conserved regions of hemagglutinin from H5N1 influenza virus has the potential to provide a therapeutic option which can be developed ahead of time in preparation for a possible pandemic due to H5N1 viruses. In this study, we used a combination of panning strategies against the hemagglutinin (HA) of several antigenic distinct H5N1 isolates to bias selection of Fab-phage from a naïve human library away from the antigenic regions of HA, toward the more conserved portions of the protein. All of the identified Fab clones which showed binding to multiple antigenically distinct HA were converted to fully human IgG, and tested for their ability to neutralize the uptake of H5N1-virus like particles (VLP) into MDCK cells. Five of the antibodies which showed binding to the relatively conserved HA2 subunit of HA, exhibited neutralization of H5N1-VLP uptake in a dose dependant manner. The inhibitory effects of these five antibodies were similar to those observed with a previously described neutralizing antibody specific for the 140s antigenic loop present within HA1 and highlight the exciting possibility that these antibodies may be efficacious against multiple H5N1 strains

    Epitope characterization of the protective monoclonal antibody VN04-2 shows broadly neutralizing activity against highly pathogenic H5N1

    Get PDF
    The monoclonal antibody VN04-2 was previously shown to protect mice against lethal A/Vietnam/1203/04 H5N1 virus challenge when administered pre- and post-infection. In this study, we characterized the binding requirements of this antibody using direct binding to hemagglutinin and neutralization assays with H5N1 virus-like particles (H5N1-VLP) of eight recent H5N1 strains representing the major mutations within the 140s antigenic loop. Binding was clade independent and 3 mutations within this antigenic region are required before escape is possible, suggesting that apart from the H5N1 viruses circulating in Indonesia, VN04-2 may provide protection against H5N1 viruses from all other regions

    Is it better to treat chronic hepatitis B as early as possible?—Con

    Full text link
    Ideally, treatment of chronic hepatitis B in its early stage prior to irreversible liver damage should be most effective in preventing adverse clinical outcome. However, currently available treatments have low efficacy in achieving sustained response among patients in the early phase of chronic hepatitis B infection when the immune response to hepatitis B virus is weak. This review will provide evidence why a ‘wait and monitor’ approach is appropriate for chronic hepatitis B patients who are in the immune tolerant phase.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73513/1/j.1440-1746.2004.03660.x.pd

    Generation and analysis of large-scale expressed sequence tags (ESTs) from a full-length enriched cDNA library of porcine backfat tissue

    Get PDF
    BACKGROUND: Genome research in farm animals will expand our basic knowledge of the genetic control of complex traits, and the results will be applied in the livestock industry to improve meat quality and productivity, as well as to reduce the incidence of disease. A combination of quantitative trait locus mapping and microarray analysis is a useful approach to reduce the overall effort needed to identify genes associated with quantitative traits of interest. RESULTS: We constructed a full-length enriched cDNA library from porcine backfat tissue. The estimated average size of the cDNA inserts was 1.7 kb, and the cDNA fullness ratio was 70%. In total, we deposited 16,110 high-quality sequences in the dbEST division of GenBank (accession numbers: DT319652-DT335761). For all the expressed sequence tags (ESTs), approximately 10.9 Mb of porcine sequence were generated with an average length of 674 bp per EST (range: 200–952 bp). Clustering and assembly of these ESTs resulted in a total of 5,008 unique sequences with 1,776 contigs (35.46%) and 3,232 singleton (65.54%) ESTs. From a total of 5,008 unique sequences, 3,154 (62.98%) were similar to other sequences, and 1,854 (37.02%) were identified as having no hit or low identity (<95%) and 60% coverage in The Institute for Genomic Research (TIGR) gene index of Sus scrofa. Gene ontology (GO) annotation of unique sequences showed that approximately 31.7, 32.3, and 30.8% were assigned molecular function, biological process, and cellular component GO terms, respectively. A total of 1,854 putative novel transcripts resulted after comparison and filtering with the TIGR SsGI; these included a large percentage of singletons (80.64%) and a small proportion of contigs (13.36%). CONCLUSION: The sequence data generated in this study will provide valuable information for studying expression profiles using EST-based microarrays and assist in the condensation of current pig TCs into clusters representing longer stretches of cDNA sequences. The isolation of genes expressed in backfat tissue is the first step toward a better understanding of backfat tissue on a genomic basis

    Ontology-based, Tissue MicroArray oriented, image centered tissue bank

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tissue MicroArray technique is becoming increasingly important in pathology for the validation of experimental data from transcriptomic analysis. This approach produces many images which need to be properly managed, if possible with an infrastructure able to support tissue sharing between institutes. Moreover, the available frameworks oriented to Tissue MicroArray provide good storage for clinical patient, sample treatment and block construction information, but their utility is limited by the lack of data integration with biomolecular information.</p> <p>Results</p> <p>In this work we propose a Tissue MicroArray web oriented system to support researchers in managing bio-samples and, through the use of ontologies, enables tissue sharing aimed at the design of Tissue MicroArray experiments and results evaluation. Indeed, our system provides ontological description both for pre-analysis tissue images and for post-process analysis image results, which is crucial for information exchange. Moreover, working on well-defined terms it is then possible to query web resources for literature articles to integrate both pathology and bioinformatics data.</p> <p>Conclusions</p> <p>Using this system, users associate an ontology-based description to each image uploaded into the database and also integrate results with the ontological description of biosequences identified in every tissue. Moreover, it is possible to integrate the ontological description provided by the user with a full compliant gene ontology definition, enabling statistical studies about correlation between the analyzed pathology and the most commonly related biological processes.</p

    Pharmacodynamic Modeling of Anti-Cancer Activity of Tetraiodothyroacetic Acid in a Perfused Cell Culture System

    Get PDF
    Unmodified or as a poly[lactide-co-glycolide] nanoparticle, tetraiodothyroacetic acid (tetrac) acts at the integrin αvβ3 receptor on human cancer cells to inhibit tumor cell proliferation and xenograft growth. To study in vitro the pharmacodynamics of tetrac formulations in the absence of and in conjunction with other chemotherapeutic agents, we developed a perfusion bellows cell culture system. Cells were grown on polymer flakes and exposed to various concentrations of tetrac, nano-tetrac, resveratrol, cetuximab, or a combination for up to 18 days. Cells were harvested and counted every one or two days. Both NONMEM VI and the exact Monte Carlo parametric expectation maximization algorithm in S-ADAPT were utilized for mathematical modeling. Unmodified tetrac inhibited the proliferation of cancer cells and did so with differing potency in different cell lines. The developed mechanism-based model included two effects of tetrac on different parts of the cell cycle which could be distinguished. For human breast cancer cells, modeling suggested a higher sensitivity (lower IC50) to the effect on success rate of replication than the effect on rate of growth, whereas the capacity (Imax) was larger for the effect on growth rate. Nanoparticulate tetrac (nano-tetrac), which does not enter into cells, had a higher potency and a larger anti-proliferative effect than unmodified tetrac. Fluorescence-activated cell sorting analysis of harvested cells revealed tetrac and nano-tetrac induced concentration-dependent apoptosis that was correlated with expression of pro-apoptotic proteins, such as p53, p21, PIG3 and BAD for nano-tetrac, while unmodified tetrac showed a different profile. Approximately additive anti-proliferative effects were found for the combinations of tetrac and resveratrol, tetrac and cetuximab (Erbitux), and nano-tetrac and cetuximab. Our in vitro perfusion cancer cell system together with mathematical modeling successfully described the anti-proliferative effects over time of tetrac and nano-tetrac and may be useful for dose-finding and studying the pharmacodynamics of other chemotherapeutic agents or their combinations

    Tool path pattern and feed direction selection in robotic milling for increased chatter-free material removal rate

    Get PDF
    Robotic milling becomes increasingly relevant to large-scale part manufacturing industries thanks to its cost-effective and portable manufacturing concept compared to large-scale CNC machine tools. Integration of milling processes with industrial robots is proposed to be well aligned with the aims and objective of the recent fourth industrial revolution. However, the industrial robots introduce position-dependent and asymmetrical dynamic flexibility, which may reflect to the tool tip dynamics under several conditions. Under such circumstances, the stability limits become dependent on the machining location and the feed direction. In this respect, selection of machining tool path patterns is crucial for increased chatter-free material removal rates (MRR). This paper proposes an approach to evaluate and select tool path patterns, offered by the existing CAM packages, for increased chatter-free MRR. The machining area is divided into number of machining locations. The optimal feed direction is decided based on the absolute stability at each region considering the asymmetrical and position-dependent tool tip dynamics. Then, the alternative tool path patterns are evaluated and the corresponding optimum feed direction is decided for increased chatter-free material removal. The application of the proposed approach is demonstrated through simulations and representative experiments
    corecore