18 research outputs found

    Detection of Vulnerable Atherosclerotic Plaque

    Get PDF
    Heart attacks are the cause for the majority of deaths in the industrialized world. The underlying cause of most of these deaths is the rupture of vulnerable plaque. As of this day, no widely accepted clinical tool exists for detecting plaques that are prone to rupture, although several techniques are being investigated. This thesis gives an overview of detection modalities that have been proposed for detecting vulnerable plaque with special emphasis on three methods, diffuse reflection spectroscopy, thermography and multiphoton microscopy

    Novel imaging technologies for characterization of microbial extracellular polysaccharides

    Get PDF
    Understanding of biology is underpinned by the ability to observe structures at various length scales. This is so in a historical context and is also valid today. Evolution of novel insight often emerges from technological advancement. Recent developments in imaging technologies that is relevant for characterization of extraceullar microbiological polysaccharides are summarized. Emphasis is on scanning probe and optical based techniques since these tools offers imaging capabilities under aqueous conditions more closely resembling the physiological state than other ultramicroscopy imaging techniques. Following the demonstration of the scanning probe microscopy principle, novel operation modes to increase data capture speed toward video rate, exploitation of several cantilever frequencies, and advancement of utilization of specimen mechanical properties as contrast, also including their mode of operation in liquid, have been developed on this platform. Combined with steps in advancing light microscopy with resolution beyond the far field diffraction limit, non-linear methods, and combinations of the various imaging modalities, the potential ultramicroscopy toolbox available for characterization of exopolysaccharides (EPS) are richer than ever. Examples of application of such ultramicroscopy strategies range from imaging of isolated microbial polysaccharides, structures being observed when they are involved in polyelectrolyte complexes, aspects of their enzymatic degradation, and cell surface localization of secreted polysaccharides. These, and other examples, illustrate that the advancement in imaging technologies relevant for EPS characterization supports characterization of structural aspects

    Non-linear optical microscopy of cartilage canals in the distal femur of young pigs may reveal the cause of articular osteochondrosis

    Get PDF
    Background Articular osteochondrosis is a common cause of leg weakness in pigs and is defined as a focal delay in the endochondral ossification of the epiphysis. The first demonstrated steps in the pathogenesis consist of loss of blood supply and subsequent chondronecrosis in the epiphyseal growth cartilage. Blood vessels in cartilage are located in cartilage canals and become incorporated into the secondary ossification centre during growth. It has been hypothesized that vascular failure occurs during this incorporation process, but it is not known what predisposes a canal to fail. To obtain new information that may reveal the cause of vascular failure, the distal femur of 4 pigs aged 82–140 days was sampled and examined by non-linear optical microscopy. This novel technique was used for its ability to reveal information about collagen by second harmonic generation and cellular morphology by two-photon-excited fluorescence in thick sections without staining. The aims were to identify morphological variations between cartilage canal segments and to examine if failed cartilage canals could be followed back to the location where the blood supply ceased. Results The cartilage canals were shown to vary in their content of collagen fibres (112/412 segments), and the second harmonic and fluorescence signals indicated a variation in the bundling of collagen fibrils (245/412 segments) and in the calcification (30/412 segments) of the adjacent cartilage matrix. Failed cartilage canals associated with chondronecrosis were shown to enter the epiphyseal growth cartilage from not only the secondary ossification centre, but also the attachment site of the caudal cruciate ligament. Conclusion The variations between cartilage canal segments could potentially explain why the blood supply fails at the osteochondral junction in only a subset of the canals. Proteins linked to these variations should be examined in future genomic studies. Although incorporation can still be a major cause, it could not account for all cases of vascular failure. The role of the caudal cruciate ligament in the cause of osteochondrosis should therefore be investigated further

    The effect of captions and written text on viewing behavior in educational videos

    No full text
    The use of videos as learning objects has increased together with an increased variation in the designs of these educational videos. However, to create effective learning objects it is important to have detailed information about how users perceive and interact with the different parts of the multimedia design. In this paper we study, using eye-tracker technology, how fast and for how long viewers focus on captions and written text in a video. An educational video on thermodynamics was created where captions were used to highlight important concepts. Screen recordings of written text from a tablet were used to illustrate mathematical notations and calculations. The results show that there is a significant delay of about 2 seconds before viewers focus on graphical objects that appear, both for captions and for written text. For captions, the viewers focus on the element for 2-3 seconds, whereas for written text blocks, it is strongly dependent on the amount and quality of the presented information. These temporal aspects of the viewers’ attention will be important for the proper design of educational videos to achieve appropriate synchronization between graphical objects and narration and thereby supporting learning

    Automated polarization-resolved second harmonic generation imaging

    No full text
    Polarization-resolved second harmonic generation (P-SHG) microscopy has evolved as a promising technique to reveal subresolution information about the structure and orientation of ordered biological macromolecules. To extend the adoption of the technique, it should be easily integrated onto commercial laser scanning microscopes. Furthermore, procedures for easy calibration and assessment of measurement accuracy are essential, and measurements should be fully automated to allow for analysis of large quantities of samples. In this paper we present a setup for P-SHG which is readily incorporated on commercial multiphoton microscopes. The entire system is completely automated which allows for rapid calibration through the freely available software and for automated imaging for different polarization measurements, including linear and circular polarization of the excitation beam. The results show that calibration settings are highly system dependent. We also show that the accuracy of the polarization control is easily quantified and that it varies between systems. The accuracy can be tuned by iterative alignment of optics or a more fine-grained calibration procedure. Images of real samples show that the red accuracy of the results is easily visualized with the automated setup. Through this system we believe that P-SHG could develop a wider adoption in biomedical applications.publishedVersionCopyright: © 2018 Romijn et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Non-linear optical microscopy as a novel quantitative and label-free imaging modality to improve the assessment of tissue-engineered cartilage

    Get PDF
    Objective: Current systems to evaluate outcomes from tissue-engineered cartilage (TEC) are sub-optimal. The main purpose of our study was to demonstrate the use of second harmonic generation (SHG) microscopy as a novel quantitative approach to assess collagen deposition in laboratory made cartilage constructs. Methods: Scaffold-free cartilage constructs were obtained by condensation of in vitro expanded Hoffa's fat pad derived stromal cells (HFPSCs), incubated in the presence or absence of chondrogenic growth factors (GF) during a period of 21 d. Cartilage-like features in constructs were assessed by Alcian blue staining, transmission electron microscopy (TEM), SHG and two-photon excited fluorescence microscopy. A new scoring system, using second harmonic generation microscopy (SHGM) index for collagen density and distribution, was adapted to the existing “Bern score” in order to evaluate in vitro TEC. Results: Spheroids with GF gave a relative high Bern score value due to appropriate cell morphology, cell density, tissue-like features and proteoglycan content, whereas spheroids without GF did not. However, both TEM and SHGM revealed striking differences between the collagen framework in the spheroids and native cartilage. Spheroids required a four-fold increase in laser power to visualize the collagen matrix by SHGM compared to native cartilage. Additionally, collagen distribution, determined as the area of tissue generating SHG signal, was higher in spheroids with GF than without GF, but lower than in native cartilage. Conclusion: SHG represents a reliable quantitative approach to assess collagen deposition in laboratory engineered cartilage, and may be applied to improve currently established scoring systems

    Biochemical and Structural Characterization of Neocartilage Formed by Mesenchymal Stem Cells in Alginate Hydrogels

    Get PDF
    A popular approach to make neocartilage in vitro is to immobilize cells with chondrogenic potential in hydrogels. However, functional cartilage cannot be obtained by control of cells only, as function of cartilage is largely dictated by architecture of extracellular matrix (ECM). Therefore, characterization of the cells, coupled with structural and biochemical characterization of ECM, is essential in understanding neocartilage assembly to create functional implants in vitro. We focused on mesenchymal stem cells (MSC) immobilized in alginate hydrogels, and used immunohistochemistry (IHC) and gene expression analysis combined with advanced microscopy techniques to describe properties of cells and distribution and organization of the forming ECM. In particular, we used second harmonic generation (SHG) microscopy and focused ion beam/scanning electron microscopy (FIB/SEM) to study distribution and assembly of collagen. Samples with low cell seeding density (1e7 MSC/ml) showed type II collagen molecules distributed evenly through the hydrogel. However, SHG microscopy clearly indicated only pericellular localization of assembled fibrils. Their distribution was improved in hydrogels seeded with 5e7 MSC/ml. In those samples, FIB/SEM with nm resolution was used to visualize distribution of collagen fibrils in a three dimensional network extending from the pericellular region into the ECM. In addition, distribution of enzymes involved in procollagen processing were investigated in the alginate hydrogel by IHC. It was discovered that, at high cell seeding density, procollagen processing and fibril assembly was also occurring far away from the cell surface, indicating sufficient transport of procollagen and enzymes in the intercellular space. At lower cell seeding density, the concentration of enzymes involved in procollagen processing was presumably too low. FIB/SEM and SHG microscopy combined with IHC localization of specific proteins were shown to provide meaningful insight into ECM assembly of neocartilage, which will lead to better understanding of cartilage formation and development of new tissue engineering strategies
    corecore