726 research outputs found

    Effect of Dynamical Coulomb Correlations on the Fermi Surface of Na_0.3CoO_2

    Get PDF
    The t2g quasi-particle spectra of Na_0.3CoO_2 are calculated within the dynamical mean field theory. It is shown that as a result of dynamical Coulomb correlations charge is transfered from the nearly filled e_g' subbands to the a_1g band, thereby reducing orbital polarization among Co t2g states. Dynamical correlations therefore stabilize the small e_g' Fermi surface pockets, in contrast to angle-resolved photoemission data, which do not reveal these pockets.Comment: 4 pages, to appear in PR

    Doping-driven Mott transition in La_{1-x}Sr_xTiO_3 via simultaneous electron and hole doping of t2g subbands

    Get PDF
    The insulator to metal transition in LaTiO_3 induced by La substitution via Sr is studied within multi-band exact diagonalization dynamical mean field theory at finite temperatures. It is shown that weak hole doping triggers a large interorbital charge transfer, with simultaneous electron and hole doping of t2g subbands. The transition is first-order and exhibits phase separation between insulator and metal. In the metallic phase, subband compressibilities become very large and have opposite signs. Electron doping gives rise to an interorbital charge flow in the same direction as hole doping. These results can be understood in terms of a strong orbital depolarization.Comment: 4 pages, 5 figure

    Distributed mobility management - framework & analysis

    Get PDF
    Mobile operators consider the distribution of mobility anchors to enable offloading some traffic from their core network. The Distributed Mobility Management (DMM) Working Group is investigating the impact of decentralized mobility management to existing protocol solutions, while taking into account well defined requirements, which are to be met by a future solution. This document discusses DMM using a functional framework. Functional Entities to support DMM as well as reference points between these Functional Entities are introduced and described. The described functional framework allows distribution and co-location of Functional Entities and build a DMM architecture that matches the architecture of available protocols. Such methodology eases the analysis of best current practices with regard to functional and protocol gaps

    Distributed mobility management:Framework & analysis

    Get PDF

    an extensible tuplespace as XML-middleware

    Get PDF
    XMLSpaces.NET implements the Linda concept as a middleware for XML documents. It introduces an extended matching flexibility on nested tuples and richer data types for fields, including objects and XML documents. It is completely XML-based since data, tuples and tuplespaces are seen as trees represented as XML documents. XMLSpaces.NET is extensible in that it supports a hierarchy of matching relations on tuples and an open set of matching amongst data, documents and objects. It is currently being implemented on the .NET platform

    High-energy pseudogap in degenerate Hubbard model induced via Hund coupling

    Get PDF
    Hund coupling in the degenerate five-band Hubbard model near n=6 occupancy is shown to give rise to a significant depletion of spectral weight above the Fermi level. Calculations within dynamical mean field theory combined with exact diagonalization reveal that this pseudogap is associated with a collective mode in the self-energy caused by spin fluctuations. The pseudogap is remarkably stable over a wide range of Coulomb and exchange energies, but disappears for weak Hund coupling. The implications of this phenomenon for optical spectra of iron pnictides are discussed.Comment: 4 pages, 4 figure

    Self-energy and lifetime of Shockley and image states on Cu(100) and Cu(111): Beyond the GW approximation of many-body theory

    Full text link
    We report many-body calculations of the self-energy and lifetime of Shockley and image states on the (100) and (111) surfaces of Cu that go beyond the GWGW approximation of many-body theory. The self-energy is computed in the framework of the GW\Gamma approximation by including short-range exchange-correlation (XC) effects both in the screened interaction W (beyond the random-phase approximation) and in the expansion of the self-energy in terms of W (beyond the GW approximation). Exchange-correlation effects are described within time-dependent density-functional theory from the knowledge of an adiabatic nonlocal XC kernel that goes beyond the local-density approximation.Comment: 8 pages, 5 figures, to appear in Phys. Rev.

    Quantum theory of electric polarization nonlinearity in metal nanofilms

    Full text link
    We develop a quantum theory of electron confinement in metal nanofilms. The theory is used to compute the nonlinear response of the film to a static or low-frequency external electric field and to investigate the role of boundary conditions imposed on the metal surface. We find that the sign and magnitude of the nonlinear polarizability depends dramatically on the type of boundary condition used.Comment: Accepted to PRB in this for

    Acoustic surface plasmons in the noble metals Cu, Ag, and Au

    Full text link
    We have performed self-consistent calculations of the dynamical response of the (111) surface of the noble metals Cu, Ag, and Au. Our results indicate that the partially occupied surface-state band in these materials yields the existence of acoustic surface plasmons with linear dispersion at small wave vectors. Here we demonstrate that the sound velocity of these low-energy collective excitations, which had already been predicted to exist in the case of Be(0001), is dictated not only by the Fermi velocity of the two-dimensional surface-state band but also by the nature of the decay and penetration of the surface-state orbitals into the solid. Our linewidth calculations indicate that acoustic surface plasmons should be well defined in the energy range from zero to 400\sim 400 meV.Comment: 8 pages, two columns, 7 figures, to appear in Phys. Rev.

    Phase diagram of orbital-selective Mott transitions at finite temperatures

    Full text link
    Mott transitions in the two-orbital Hubbard model with different bandwidths are investigated at finite temperatures. By means of the self-energy functional approach, we discuss the stability of the intermediate phase with one orbital localized and the other itinerant, which is caused by the orbital-selective Mott transition (OSMT). It is shown that the OSMT realizes two different coexistence regions at finite temperatures in accordance with the recent results of Liebsch. We further find that the particularly interesting behavior emerges around the special condition U=UU=U' and J=0, which includes a new type of the coexistence region with three distinct states. By systematically changing the Hund coupling, we establish the global phase diagram to elucidate the key role played by the Hund coupling on the Mott transitions.Comment: 4 pages, 6 figure
    corecore