657 research outputs found
Muonium as a shallow center in GaN
A paramagnetic muonium (Mu) state with an extremely small hyperfine parameter
was observed for the first time in single-crystalline GaN below 25 K. It has a
highly anisotropic hyperfine structure with axial symmetry along the [0001]
direction, suggesting that it is located either at a nitrogen-antibonding or a
bond-centered site oriented parallel to the c-axis. Its small ionization energy
(=< 14 meV) and small hyperfine parameter (--10^{-4} times the vacuum value)
indicate that muonium in one of its possible sites produces a shallow state,
raising the possibility that the analogous hydrogen center could be a source of
n-type conductivity in as-grown GaN.Comment: 4 figures, to be published in Phys. Rev. Letter
Three Dimensional Simulation of Gamma Ray Emission from Asymmetric Supernovae and Hypernovae
Hard X- and -ray spectra and light curves resulting from radioactive
decays are computed for aspherical (jet-like) and energetic supernova models
(representing a prototypical hypernova SN 1998bw), using a 3D energy- and
time-dependent Monte Carlo scheme. The emission is characterized by (1) early
emergence of high energy emission, (2) large line-to-continuum ratio, and (3)
large cut-off energy by photoelectric absorptions in hard X-ray energies. These
three properties are not sensitively dependent on the observer's direction. On
the other hand, fluxes and line profiles depend sensitively on the observer's
direction, showing larger luminosity and larger degree of blueshift for an
observer closer to the polar () direction. Strategies to derive the degree
of asphericity and the observer's direction from (future) observations are
suggested on the basis of these features, and an estimate on detectability of
the high energy emission by the {\it INTEGRAL} and future observatories is
presented. Also presented is examination on applicability of a gray effective
-ray opacity for computing the energy deposition rate in the aspherical
SN ejecta. The 3D detailed computations show that the effective -ray
opacity cm g reproduces the
detailed energy-dependent transport for both spherical and aspherical
(jet-like) geometry.Comment: 24 pages, 13 figures. Figure 7 added in the accepted version. ApJ,
644 (01 June 2006 issue), in press. Resolution of figures lower than the
published versio
Measurements of Gamma-Ray Bursts (GRBs) with Glast
One of the scientific goals of the main instrument of GLAST is the study of
Gamma-Ray Bursts (GRBs) in the energy range from ~20 MeV to ~300 GeV. In order
to extend the energy measurement towards lower energies a secondary instrument,
the GLAST Burst Monitor (GBM), will measure GRBs from ~10 keV to ~25 MeV and
will therefore allow the investigation of the relation between the keV and the
MeV-GeV emission from GRBs over six energy decades. These unprecedented
measurements will permit the exploration of the unknown aspects of the
high-energy burst emission and the investigation of their connection with the
well-studied low-energy emission. They will also provide ne insights into the
physics of GRBs in general. In addition the excellent localization of GRBs by
the LAT will stimulate follow-up observations at other wavelengths which may
yield clues about the nature of the burst sources.Comment: 6 pages, 2 figures, to be published in Baltic Astronomy - Proceedings
of the minisymposium "Physics of Gamma-Ray Bursts", JENAM Conference, August
29-30, 2003, Budapes
COMPTEL upper limits for the 56Co γ-rays from SN1998bu
The type Ia supernova SN 1998bu in M96 was observed by COMPTEL for a total of 88 days starting 17 days after the detection of the SN. A special mode improving the low-energy sensitivity was invoked. We obtained images in the 847 keV and 1238 keV lines of 56Co using an improved point-spread function for the low-energies. We do not detect SN1998bu. Sensitive upper limits at both energies constrain the standard supernova model for this event
Pancreatic islets communicate with lymphoid tissues via exocytosis of insulin peptides.
Tissue-specific autoimmunity occurs when selected antigens presented by susceptible alleles of the major histocompatibility complex are recognized by T cells. However, the reason why certain specific self-antigens dominate the response and are indispensable for triggering autoreactivity is unclear. Spontaneous presentation of insulin is essential for initiating autoimmune type 1 diabetes in non-obese diabetic mice1,2. A major set of pathogenic CD4 T cells specifically recognizes the 12-20 segment of the insulin B-chain (B:12-20), an epitope that is generated from direct presentation of insulin peptides by antigen-presenting cells3,4. These T cells do not respond to antigen-presenting cells that have taken up insulin that, after processing, leads to presentation of a different segment representing a one-residue shift, B:13-214. CD4 T cells that recognize B:12-20 escape negative selection in the thymus and cause diabetes, whereas those that recognize B:13-21 have only a minor role in autoimmunity3-5. Although presentation of B:12-20 is evident in the islets3,6, insulin-specific germinal centres can be formed in various lymphoid tissues, suggesting that insulin presentation is widespread7,8. Here we use live imaging to document the distribution of insulin recognition by CD4 T cells throughout various lymph nodes. Furthermore, we identify catabolized insulin peptide fragments containing defined pathogenic epitopes in β-cell granules from mice and humans. Upon glucose challenge, these fragments are released into the circulation and are recognized by CD4 T cells, leading to an activation state that results in transcriptional reprogramming and enhanced diabetogenicity. Therefore, a tissue such as pancreatic islets, by releasing catabolized products, imposes a constant threat to self-tolerance. These findings reveal a self-recognition pathway underlying a primary autoantigen and provide a foundation for assessing antigenic targets that precipitate pathogenic outcomes by systemically sensitizing lymphoid tissues
COMPTEL upper limits for Seyfert galaxies
The gamma‐ray emission of Seyfert galaxies has fallen far short of pre‐GRO expectations. No single object of this class has been detected by either COMPTEL or EGRET, and OSSE has detected only a fraction of the Seyferts expected. To derive a more stringent upper limit to the emission from these objects in the energy ranges 0.75 to 1 and 1 to 3 MeV, we have summed a large number of COMPTEL observations acquired during Phase 1 of the GRO mission. From a total of 47 observations of 23 individual X‐ray selected Seyfert galaxies, we derive preliminary upper limits of 8×10−8 photons/(cm2 s keV) in the 0.75‐1 MeV band and 1×10−8 photons/(cm2 s keV) in the 1‐3 MeV band
- …