8 research outputs found

    New understandings of the genetic basis of isolated idiopathic central hypogonadism.

    No full text
    Idiopathic hypogonadotropic hypogonadism is a rare disease that is characterized by delayed/absent puberty and/or infertility due to an insufficient stimulation of an otherwise normal pituitary-gonadal axis by gonadotrophin-releasing hormone (GnRH) action. Because reduced or normal luteinizing hormone (LH)/follicle-stimulating hormone (FSH) levels may be observed in the affected patients, the term idiopathic central hypogonadism (ICH) appears to be more appropriate. This disease should be distinguished from central hypogonadism that is combined with other pituitary deficiencies. Isolated ICH has a complex pathogenesis and is fivefold more prevalent in males. ICH frequently appears in a sporadic form, but several familial cases have also been reported. This finding, in conjunction with the description of numerous pathogenetic gene variants and the generation of several knockout models, supports the existence of a strong genetic component. ICH may be associated with several morphogenetic abnormalities, which include osmic defects that, with ICH, constitute the cardinal manifestations of Kallmann syndrome (KS). KS accounts for approximately 40% of the total ICH cases and has been generally considered to be a distinct subgroup. However, the description of several pedigrees, which include relatives who are affected either with isolated osmic defects, KS, or normo-osmic ICH (nICH), justifies the emerging idea that ICH is a complex genetic disease that is characterized by variable expressivity and penetrance. In this context, either multiple gene variants or environmental factors and epigenetic modifications may contribute to the variable disease manifestations. We review the genetic mechanisms that are presently known to be involved in ICH pathogenesis and provide a clinical overview of the 227 cases that have been collected by the collaborating centres of the Italian ICH Network

    Frequent TSH Receptor Genetic Alterations with Variable Signaling Impairment in a Large Series of Children with Nonautoimmune Isolated Hyperthyrotropinemia.

    No full text
    CONTEXT: Heterozygous mutations in the TSH receptor gene (TSHR) are associated with partial TSH resistance, characterized by isolated nonautoimmune hyperthyrotropinemia (NAHT). The prevalence and management of this condition is controversial. OBJECTIVE: Our objective was to investigate the prevalence and clinical impact of TSHR alterations in a large series of pediatric patients with NAHT and to dissect their mechanism of action. DESIGN AND SETTING: For this prospective multicenter study, clinical data and samples were collected in the clinical units and conveyed to a centralized laboratory for analysis. PATIENTS: Subjects included 153 unrelated patients with NAHT aged <18 yr. Exclusion criteria included thyroid dysgenesis or major associated congenital defects. MAIN OUTCOME MEASURES: Parameters of thyroid function, TSHR gene analysis, and TSHR functional assays were evaluated. RESULTS: The frequency of heterozygous nonpolymorphic TSHR variations was 11.8%. We identified seven previously unknown variations: a frameshift (p.Q33PfsX46), one intronic (g.IVS4+2A\u2192G), and five novel missense (p.P162L, p.Y466C, p.I583T, p.I607T, and p.R609Q) variations. The missense variations variably affected TSHR membrane expression and G(s) and/or G(q/11) signaling. Several variations cosegregated with NAHT in the affected families. Parameters of thyroid function were similar between affected and unaffected family members. CONCLUSIONS: Nonpolymorphic alterations in the TSHR gene are commonly associated with isolated NAHT in young patients, thus configuring partial TSH resistance as the most frequent inheritable cause of isolated NAHT. The identification of TSHR defects may thus be helpful for a tailored management of subclinical hypothyroidism. We provide further evidence that besides the well-known defects in G(s) signaling, TSHR genetic alternations found in NAHT may frequently impair the G(q/11) pathway

    CD57 in human natural killer cells and T-lymphocytes

    No full text
    The CD57 antigen (alternatively HNK-1, LEU-7, or L2) is routinely used to identify terminally differentiated ‘senescent’ cells with reduced proliferative capacity and altered functional properties. In this article, we review current understanding of the attributes of CD57-expressing T-cells and NK cells in both health and disease and discuss how this marker can inform researchers about their likely functions in human blood and tissues in vivo. While CD57 expression on human lymphocytes indicates an inability to proliferate, these cells also display high cytotoxic potential, and CD57pos NK cells exhibit both memory-like features and potent effector functions. Accordingly, frequencies of CD57-expressing cells in blood and tissues have been correlated with clinical prognosis in chronic infections or various cancers and with human aging. Functional modulation of senescent CD57pos T-cells and mature CD57pos NK cells may therefore represent innovative strategies for protection against human immunological aging and/or various chronic diseases

    Involvement of extrasynaptic glutamate in physiological and pathophysiological changes of neuronal excitability

    No full text
    corecore