33 research outputs found

    The Role of Renal Vascular Reactivity in the Development of Renal Dysfunction in Compensated and Decompensated Congestive Heart Failure

    Get PDF
    Background/Aims: Reduction of renal blood flow (RBF) is commonly thought to be a causative factor of renal dysfunction in congestive heart failure (CHF), but the exact mechanism of the renal hypoperfusion is not clear. Apart from the activation of neurohormonal systems controlling intrarenal vascular tone, the cause might be altered reactivity of the renal vasculature to endogenous vasoactive agents. Methods: To evaluate the role of this mechanism, we assessed by an ultrasonic transient-time flow probe maximum RBF responses to renal artery infusion of angiotensin II (ANG II), norepinephrine (NE) and acetylcholine (Ach) in healthy male rats and animals with compensated and decompensated CHF. CHF was induced by volume overload achieved by the creation of the aorto-caval fistula (ACF) in Hannover Sprague-Dawley rats. Results: Maximum responses in RBF to ANG II were similar in rats studied five weeks (compensated phase) and 20 weeks (decompensated phase) after ACF creation when compared to sham-operated rats. On the other hand, NE elicited larger maximum decreases in RBF in rats with CHF (five and 20 weeks post-ACF) than in sham-operated controls. We observed greater maximum vasodilatory responses to Ach only in rats with a compensated stage of CHF (five weeks post-ACF). Conclusion: Greater renal vasoconstrictor responsiveness to ANG II or reduced renal vasodilatation in response to Ach do not play a decisive role in the development of renal dysfunction in ACF rats with compensated and decompensated CHF. On the other hand, exaggerated renal vascular responsiveness to NE may be here a contributing causative factor, active in either CHF phase

    Pharmacological Blockade of Soluble Epoxide Hydrolase Attenuates the Progression of Congestive Heart Failure Combined With Chronic Kidney Disease: Insights From Studies With Fawn-Hooded Hypertensive Rats

    Get PDF
    An association between congestive heart failure (CHF) and chronic kidney disease (CKD) results in extremely poor patient survival rates. Previous studies have shown that increasing kidney epoxyeicosatrienoic acids (EETs) by blocking soluble epoxide hydrolase (sEH), an enzyme responsible for EETs degradation, improves the survival rate in CHF induced by aorto-caval fistula (ACF) and attenuates CKD progression. This prompted us to examine if sEH inhibitor treatment would improve the outcome if both experimental conditions are combined. Fawn-hooded hypertensive (FHH) rats, a genetic model showing early CKD development was employed, and CHF was induced by ACF. Treatment with an sEH inhibitor was initiated 4 weeks after ACF creation, in FHH and in fawn-hooded low-pressure (FHL) rats, a control strain without renal damage. The follow-up period was 20 weeks. We found that ACF FHH rats exhibited substantially lower survival rates (all the animals died by week 14) as compared with the 64% survival rate observed in ACF FHL rats. The former group showed pronounced albuminuria (almost 30-fold higher than in FHL) and reduced intrarenal EET concentrations. The sEH inhibitor treatment improved survival rate and distinctly reduced increases in albuminuria in ACF FHH and in ACF FHL rats, however, all the beneficial actions were more pronounced in the hypertensive strain. These data indicate that pharmacological blockade of sEH could be a novel therapeutic approach for the treatment of CHF, particularly under conditions when it is associated with CKD

    The role of intrarenal interaction in the renin-angiotensin system; nitric oxide and oxidative stress in the regulation of renal function and blood pressure in experimental models of hypertension

    Get PDF
    The role of intrarenal interaction in the renin-angiotensin system; nitric oxide and oxidative stress in the regulation of renal function and blood pressure in experimental models of hypertension Powered by TCPDF (www.tcpdf.org

    Anti-Fibrotic Potential of Angiotensin (1-7) in Hemodynamically Overloaded Rat Heart

    No full text
    The extracellular matrix (ECM) is a highly dynamic structure controlling the proper functioning of heart muscle. ECM remodeling with enhanced collagen deposition due to hemodynamic overload impairs cardiomyocyte adhesion and electrical coupling that contributes to cardiac mechanical dysfunction and arrhythmias. We aimed to explore ECM and connexin-43 (Cx43) signaling pathways in hemodynamically overloaded rat heart as well as the possible implication of angiotensin (1-7) (Ang (1-7)) to prevent/attenuate adverse myocardial remodeling. Male 8-week-old, normotensive Hannover Spraque–Dawley rats (HSD), hypertensive (mRen-2)27 transgenic rats (TGR) and Ang (1-7) transgenic rats (TGR(A1-7)3292) underwent aortocaval fistula (ACF) to produce volume overload. Five weeks later, biometric and heart tissue analyses were performed. Cardiac hypertrophy in response to volume overload was significantly less pronounced in TGR(A1-7)3292 compared to HSD rats. Moreover, a marker of fibrosis hydroxyproline was increased in both ventricles of volume-overloaded TGR while it was reduced in the Ang (1-7) right heart ventricle. The protein level and activity of MMP-2 were reduced in both ventricles of volume-overloaded TGR/TGR(A1-7)3292 compared to HSD. SMAD2/3 protein levels were decreased in the right ventricle of TGR(A1-7)3292 compared to HSD/TGR in response to volume overload. In parallel, Cx43 and pCx43 implicated in electrical coupling were increased in TGR(A1-7)3292 versus HSD/TGR. It can be concluded that Ang (1-7) exhibits cardio-protective and anti-fibrotic potential in conditions of cardiac volume overload

    High-salt intake enhances superoxide activity in eNOS knockout mice leading to the development of salt sensitivity

    No full text
    A deficiency in nitric oxide (NO) generation leads to salt-sensitive hypertension, but the role of increased superoxide (O2−) in such salt sensitivity has not been delineated. We examined the hypothesis that an enhancement in O2− activity induced by high-salt (HS) intake under deficient NO production contributes to the development of salt-sensitive hypertension. Endothelial NO synthase knockout (eNOS KO; total n = 64) and wild-type (WT; total n = 58) mice were given diets containing either normal (NS; 0.4%) or high-salt (HS; 4%) for 2 wk. During this period, mice were chronically treated with a O2− scavenger, tempol (400 mg/l), or an inhibitor of NADPH oxidase, apocynin (1 g/l), in drinking water or left untreated (n = 6–8 per group). Blood pressure was measured by radiotelemetry and 24-h urine samples were collected in metabolic cages. Basal mean arterial pressure (MAP) in eNOS KO was higher (125 ± 4 vs. 106 ± 3 mmHg) compared with WT. Feeding HS diet did not alter MAP in WT but increased it in eNOS KO to 166 ± 9 mmHg. Both tempol and apocynin treatment significantly attenuated the MAP response to HS in eNOS KO (134 ± 3 and 139 ± 4 mmHg, respectively). Basal urinary 8-isoprostane excretion rates (UIsoV), a marker for endogenous O2− activity, were similar (2.8 ± 0.2 and 2.4 ± 0.3 ng/day) in both eNOS KO and WT mice. However, HS increased UIsoV more in eNOS KO than in WT (4.6 ± 0.3 vs. 3.8 ± 0.2 ng/day); these were significantly attenuated by both tempol and apocynin treatment. These data indicate that an enhancement in O2− activity contributes substantially to the development of salt-sensitive hypertension under NO-deficient conditions
    corecore