743 research outputs found

    A semi-free weighting matrices approach for neutral-type delayed neural networks

    Get PDF
    AbstractIn this paper, a new approach is proposed for stability issues of neutral-type neural networks (DNNs) with constant delay. First, the semi-free weighting matrices are proposed and used instead of the known free weighting matrices to express the relationship between the terms in the Leibniz–Newton formula to simplify the system synthesis and to obtain less computation demand. Second, global exponential stability conditions which are less conservative and restrictive than the known results are derived. At the same time, based on the above approach, fewer variable matrices are introduced in the construction of the Lyapunov functional and augmented Lyapunov functional. Two examples are given to show their effectiveness and advantages over others

    Assessment of the tradeoff between energy efficiency and transfer opportunities in an urban rail transit network

    Get PDF
    Urban rail transit (URT) in metropolitan areas consumes huge energy. Energy-efficient timetabling (EET) of URT is an essential measurement of URT management and technologies toward carbon neutralization initiatives. However, the majority EET studies focus on single URT lines ignoring passenger transfer and path choice in the entire URT network. As passenger path choice and timetabling are interdependent in a URT network, the ignorance of passenger transfers potentially results in irrelevant energy efficiency of a URT network. This paper proposes a bi-objective EET model incorporating the minimization of passenger transfer times as an objective in addition to energy efficiency. The timetabling objectives and constraints are linearized, and the bi-objective is transformed into a single objective by a linear weighting method. Utilizing the passenger demand and speed profile data of URT in the City of Xi'an (China), a case study is performed to demonstrate the effectiveness of the proposed EET model. The numerical results show that an optimized timetable solution can reduce 25.1% energy consumption and save 3.3% passenger transfer time.</p

    Fixation-induced cell blebbing on spread cells inversely correlates with phosphatidylinositol 4,5-bisphosphate level in the plasma membrane

    Get PDF
    AbstractWhile most attention has been focused on physiologically generated blebs, the molecular mechanisms for fixation-induced cell blebbing are less investigated. We show that protein-fixing (e.g. aldehydes and picric acid) but not lipid-stabilizing (e.g. OsO4 and KMnO4) fixatives induce blebbing on spread cells. We also show that aldehyde fixation may induce the loss or delocalization of phosphatidylinositol 4,5-bisphosphate (PIP2) in the plasma membrane and that the asymmetric distribution of fixation-induced blebs on spread/migrating cells coincides with that of PIP2 on the cells prefixed by lipid-stabilizing fixatives (e.g., OsO4). Moreover, fixation induces blebbing less readily on PIP2-elevated spread cells but more readily on PIP2-lowered or lipid raft-disrupted spread cells. Our data suggest that fixation-induced lowering of PIP2 level at cytoskeleton-attaching membrane sites causes bleb formation via local breakdown of the membrane–cytoskeleton coupling

    Observation of ηcωω\eta_c\to\omega\omega in J/ψγωωJ/\psi\to\gamma\omega\omega

    Get PDF
    Using a sample of (1310.6±7.0)×106(1310.6\pm7.0)\times10^6 J/ψJ/\psi events recorded with the BESIII detector at the symmetric electron positron collider BEPCII, we report the observation of the decay of the (11S0)(1^1 S_0) charmonium state ηc\eta_c into a pair of ω\omega mesons in the process J/ψγωωJ/\psi\to\gamma\omega\omega. The branching fraction is measured for the first time to be B(ηcωω)=(2.88±0.10±0.46±0.68)×103\mathcal{B}(\eta_c\to\omega\omega)= (2.88\pm0.10\pm0.46\pm0.68)\times10^{-3}, where the first uncertainty is statistical, the second systematic and the third is from the uncertainty of B(J/ψγηc)\mathcal{B}(J/\psi\to\gamma\eta_c). The mass and width of the ηc\eta_c are determined as M=(2985.9±0.7±2.1)M=(2985.9\pm0.7\pm2.1)\,MeV/c2c^2 and Γ=(33.8±1.6±4.1)\Gamma=(33.8\pm1.6\pm4.1)\,MeV.Comment: 13 pages, 6 figure

    Observation and study of the decay J/ψϕηηJ/\psi\rightarrow\phi\eta\eta'

    Get PDF
    We report the observation and study of the decay J/ψϕηηJ/\psi\rightarrow\phi\eta\eta' using 1.3×1091.3\times{10^9} J/ψJ/\psi events collected with the BESIII detector. Its branching fraction, including all possible intermediate states, is measured to be (2.32±0.06±0.16)×104(2.32\pm0.06\pm0.16)\times{10^{-4}}. We also report evidence for a structure, denoted as XX, in the ϕη\phi\eta' mass spectrum in the 2.02.12.0-2.1 GeV/c2c^2 region. Using two decay modes of the η\eta' meson (γπ+π\gamma\pi^+\pi^- and ηπ+π\eta\pi^+\pi^-), a simultaneous fit to the ϕη\phi\eta' mass spectra is performed. Assuming the quantum numbers of the XX to be JP=1J^P = 1^-, its significance is found to be 4.4σ\sigma, with a mass and width of (2002.1±27.5±21.4)(2002.1 \pm 27.5 \pm 21.4) MeV/c2c^2 and (129±17±9)(129 \pm 17 \pm 9) MeV, respectively, and a product branching fraction B(J/ψηX)×B(Xϕη)=(9.8±1.2±1.7)×105\mathcal{B}(J/\psi\rightarrow\eta{}X)\times{}\mathcal{B}(X\rightarrow\phi\eta')=(9.8 \pm 1.2 \pm 1.7)\times10^{-5}. Alternatively, assuming JP=1+J^P = 1^+, the significance is 3.8σ\sigma, with a mass and width of (2062.8±13.1±7.2)(2062.8 \pm 13.1 \pm 7.2) MeV/c2c^2 and (177±36±35)(177 \pm 36 \pm 35) MeV, respectively, and a product branching fraction B(J/ψηX)×B(Xϕη)=(9.6±1.4±2.0)×105\mathcal{B}(J/\psi\rightarrow\eta{}X)\times{}\mathcal{B}(X\rightarrow\phi\eta')=(9.6 \pm 1.4 \pm 2.0)\times10^{-5}. The angular distribution of J/ψηXJ/\psi\rightarrow\eta{}X is studied and the two JPJ^P assumptions of the XX cannot be clearly distinguished due to the limited statistics. In all measurements the first uncertainties are statistical and the second systematic.Comment: 10 pages, 6 figures and 4 table

    Observation of Ds+pnˉD^+_s\rightarrow p\bar{n} and confirmation of its large branching fraction

    Full text link
    The baryonic decay Ds+pnˉD^+_s\rightarrow p\bar{n} is observed, and the corresponding branching fraction is measured to be (1.21±0.10±0.05)×103(1.21\pm0.10\pm0.05)\times10^{-3}, where the first uncertainty is statistical and second systematic. The data sample used in this analysis was collected with the BESIII detector operating at the BEPCII e+ee^+e^- double-ring collider with a center-of-mass energy of 4.178~GeV and an integrated luminosity of 3.19~fb1^{-1}. The result confirms the previous measurement by the CLEO Collaboration and is of greatly improved precision, which may deepen our understanding of the dynamical enhancement of the W-annihilation topology in the charmed meson decays

    First observations of hch_c \to hadrons

    Get PDF
    Based on (4.48±0.03)×108(4.48 \pm 0.03) \times 10^{8} ψ(3686)\psi(3686) events collected with the BESIII detector, five hch_c hadronic decays are searched for via process ψ(3686)π0hc\psi(3686) \to \pi^0 h_c. Three of them, hcppˉπ+πh_c \to p \bar{p} \pi^+ \pi^-, π+ππ0\pi^+ \pi^- \pi^0, and 2(π+π)π02(\pi^+ \pi^-) \pi^0 are observed for the first time, with statistical significances of 7.4σ\sigma, 4.9σ4.9\sigma, and 9.1σ\sigma, and branching fractions of (2.89±0.32±0.55)×103(2.89\pm0.32\pm0.55)\times10^{-3}, (1.60±0.40±0.32)×103(1.60\pm0.40\pm0.32)\times10^{-3}, and (7.44±0.94±1.56)×103(7.44\pm0.94\pm1.56)\times10^{-3}, respectively, where the first uncertainties are statistical and the second systematic. No significant signal is observed for the other two decay modes, and the corresponding upper limits of the branching fractions are determined to be B(hc3(π+π)π0)<8.7×103B(h_c \to 3(\pi^+ \pi^-) \pi^0)<8.7\times10^{-3} and B(hcK+Kπ+π)<5.8×104B(h_c \to K^+ K^- \pi^+ \pi^-)<5.8\times10^{-4} at 90% confidence level.Comment: 17 pages, 16 figure

    Measurements of Weak Decay Asymmetries of Λc+pKS0\Lambda_c^+\to pK_S^0, Λπ+\Lambda\pi^+, Σ+π0\Sigma^+\pi^0, and Σ0π+\Sigma^0\pi^+

    Get PDF
    Using e+eΛc+Λˉce^+e^-\to\Lambda_c^+\bar\Lambda_c^- production from a 567 pb1^{-1} data sample collected by BESIII at 4.6 GeV, a full angular analysis is carried out simultaneously on the four decay modes of Λc+pKS0\Lambda_c^+\to pK_S^0, Λπ+\Lambda \pi^+, Σ+π0\Sigma^+\pi^0, and Σ0π+\Sigma^0\pi^+. For the first time, the Λc+\Lambda_c^+ transverse polarization is studied in unpolarized e+ee^+e^- collisions, where a non-zero effect is observed with a statistical significance of 2.1σ\sigma. The decay asymmetry parameters of the Λc+\Lambda_c^+ weak hadronic decays into pKS0pK_S^0, Λπ+\Lambda\pi^+, Σ+π0\Sigma^+\pi^0 and Σ0π+\Sigma^0\pi^+ are measured to be 0.18±0.43(stat)±0.14(syst)0.18\pm0.43(\rm{stat})\pm0.14(\rm{syst}), 0.80±0.11(stat)±0.02(syst)-0.80\pm0.11(\rm{stat})\pm0.02(\rm{syst}), 0.57±0.10(stat)±0.07(syst)-0.57\pm0.10(\rm{stat})\pm0.07(\rm{syst}), and 0.73±0.17(stat)±0.07(syst)-0.73\pm0.17(\rm{stat})\pm0.07(\rm{syst}), respectively. In comparison with previous results, the measurements for the Λπ+\Lambda\pi^+ and Σ+π0\Sigma^+\pi^0 modes are consistent but with improved precision, while the parameters for the pKS0pK_S^0 and Σ0π+\Sigma^0\pi^+ modes are measured for the first time

    Evidence of a resonant structure in the e+eπ+D0De^+e^-\to \pi^+D^0D^{*-} cross section between 4.05 and 4.60 GeV

    Get PDF
    The cross section of the process e+eπ+D0De^+e^-\to \pi^+D^0D^{*-} for center-of-mass energies from 4.05 to 4.60~GeV is measured precisely using data samples collected with the BESIII detector operating at the BEPCII storage ring. Two enhancements are clearly visible in the cross section around 4.23 and 4.40~GeV. Using several models to describe the dressed cross section yields stable parameters for the first enhancement, which has a mass of 4228.6 \pm 4.1 \pm 6.3 \un{MeV}/c^2 and a width of 77.0 \pm 6.8 \pm 6.3 \un{MeV}, where the first uncertainties are statistical and the second ones are systematic. Our resonant mass is consistent with previous observations of the Y(4220)Y(4220) state and the theoretical prediction of a DDˉ1(2420)D\bar{D}_1(2420) molecule. This result is the first observation of Y(4220)Y(4220) associated with an open-charm final state. Fits with three resonance functions with additional Y(4260)Y(4260), Y(4320)Y(4320), Y(4360)Y(4360), ψ(4415)\psi(4415), or a new resonance, do not show significant contributions from either of these resonances. The second enhancement is not from a single known resonance. It could contain contributions from ψ(4415)\psi(4415) and other resonances, and a detailed amplitude analysis is required to better understand this enhancement

    Observation of D+f0(500)e+νeD^+ \to f_0(500) e^+\nu_e and Improved Measurements of Dρe+νeD \to\rho e^+\nu_e

    Get PDF
    Using a data sample corresponding to an integrated luminosity of 2.93~fb1^{-1} recorded by the BESIII detector at a center-of-mass energy of 3.7733.773 GeV, we present an analysis of the decays Dˉ0π+π0eνˉe\bar{D}^0\to\pi^+\pi^0 e^-\bar{\nu}_e and D+ππ+e+νeD^+\to\pi^-\pi^+ e^+\nu_e. By performing a partial wave analysis, the π+π\pi^+\pi^- SS-wave contribution to D+ππ+e+νeD^+\to\pi^-\pi^+ e^+\nu_e is observed to be (25.7±1.6±1.1)(25.7\pm1.6\pm1.1)% with a statistical significance greater than 10σ\sigma, besides the dominant PP-wave contribution. This is the first observation of the SS-wave contribution. We measure the branching fractions B(D0ρe+νe)=(1.445±0.058±0.039)×103\mathcal{B}(D^{0} \to \rho^- e^+ \nu_e) = (1.445\pm 0.058 \pm 0.039) \times10^{-3}, B(D+ρ0e+νe)=(1.860±0.070±0.061)×103\mathcal{B}(D^{+} \to \rho^0 e^+ \nu_e) = (1.860\pm 0.070 \pm 0.061) \times10^{-3}, and B(D+f0(500)e+νe,f0(500)π+π)=(6.30±0.43±0.32)×104\mathcal{B}(D^{+} \to f_0(500) e^+ \nu_e, f_0(500)\to\pi^+\pi^-) = (6.30\pm 0.43 \pm 0.32) \times10^{-4}. An upper limit of B(D+f0(980)e+νe,f0(980)π+π)<2.8×105\mathcal{B}(D^{+} \to f_0(980) e^+ \nu_e, f_0(980)\to\pi^+\pi^-) < 2.8 \times10^{-5} is set at the 90% confidence level. We also obtain the hadronic form factor ratios of Dρe+νeD\to \rho e^+\nu_e at q2=0q^{2}=0 assuming the single-pole dominance parameterization: rV=V(0)A1(0)=1.695±0.083±0.051r_{V}=\frac{V(0)}{A_{1}(0)}=1.695\pm0.083\pm0.051, r2=A2(0)A1(0)=0.845±0.056±0.039r_{2}=\frac{A_{2}(0)}{A_{1}(0)}=0.845\pm0.056\pm0.039
    corecore