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Using ete™ — ATAZ production from a 567 pb~! data sample collected by BESIII at 4.6 GeV, a full
angular analysis is carried out simultaneously on the four decay modes of A — pK9, Az, 220, and £z +.
For the first time, the A} transverse polarization is studied in unpolarized e* e~ collisions, where a nonzero
effect is observed with a statistical significance of 2.16. The decay asymmetry parameters of the Al weak
hadronic decays into pK$, Az", £7z° and X%z are measured to be 0.18 + 0.43(stat) & 0.14(syst),
—0.80 £ 0.11(stat) £+ 0.02(syst), —0.57 £ 0.10(stat) £+ 0.07(syst), and —0.73 £ 0.17(stat) & 0.07(syst),
respectively. In comparison with previous results, the measurements for the Azt and £*z° modes are
consistent but with improved precision, while the parameters for the pK% and 2%z modes are measured for the
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I. INTRODUCTION

The study of the lightest charmed baryon A is impor-
tant for the understanding of the whole charmed baryon
sector. In recent years, there has been significant progress in
studying the A, both experimentally and theoretically
[1,2]. This provides crucial information in detailed explo-
rations of the singly charmed baryons (Z., E. and Q,) [3.,4],
and further searches or discoveries of the doubly charmed
baryons (2., and Q..) [5,6]. Moreover, as the charmed
baryon is the favored weak decay final state of b-baryons
and its properties are inputs to study b-baryons, improved
knowledge in the charm sector can contribute substantially
to understanding the properties of b-baryons.

Some QCD-inspired charmed baryon models that have
been developed [7] are the flavor symmetry model [8],
factorization model [9], pole model [10], and current
algebra framework [11]. As shown in Refs. [2,7], many
of these models calculate A decay rates in good agreement
with experimental results. But the decay asymmetries
predicted by these models for Al two-body hadronic weak
decays do not agree very well.

The decay asymmetry parameter, ap, in a weak decay
A} — BP (B denotes a J' = %* baryon and P denotes a
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2Re(s* p)
IsP+[pl*>

where s and p stand for the parity-violating s-wave and
parity-conserving p-wave amplitudes in the decay, respec-
tively. Model calculations of ajp in A — pK%, Azt,

>*7% and X%z are quite uncertain, with a+K0 in the range

(=1.0, —0.49),a} . in (—0.99 -0.67),a y o in (=0.76,
—0.31) or (0.39, 0.83), and 0‘20,,+ in (=0.76, —0.31) or
(0.43, 0.92) [10-18].

As predictions of &, rely on the relative phase between
the two amplitudes, the experimental measurements of the
decay asymmetry parameters serve as very sensitive probes
to test different theoretical models.

Experimentally, only o A+ and 052+ » have been mea-
sured previously [19-22]. The measured value for ocZ+ o 18
—0.45 £ 0.32, in contradiction with the predicted values in
many theoretical models [10-15]. Therefore, it is important
to carry out 1ndependent measurements of &, , to confirm

= 0~ pseudoscalar meson) is defined as o}, =

Z+0

the s1gr1 of a o and test these models. Moreover, al

>t 0
and 0520 . should have the same value according to hyperon
1sospin symmetry [16], and any deviation from this expect-
ation provides critical information on final state interactions
in Al hadronic decays. All these models predict aXﬁ
consistent with the measured values, and it is necessary to
further improve the experimental precision to discriminate
between them.

In previous experiments, Al was assumed to be unpo-
larized, and the decay asymmetry parameter aj, was
obtained by analyzing the longitudinal polarization from
the weak two-body decay of the produced baryon B, such
as A = pr~ and X - pa¥ for o . and aj, ,, respec-
tively. However, the hypothesis of unpolarized A} may not
be valid. There have been observations of transverse A
polarization in inclusive A production in e e~ collisions at
10.58 GeV [23] and in eTe™ — AA at J/y mass position
[24], and it has been postulated that the produced A/ could
be polarized [25]. Further, as the polarization of the proton
in the decay A — ng is not accessible with the above
method, a nonzero transverse polarization of the A}
provides an alternative way to measure o KO [26].

In this work, we investigate for the first time the
transverse polarization of the A} baryon in unpolarized
e"e™ annihilations. We present for the first time measure-
ments of the decay asymmetry parameters in Al decays
into pK?, Az*, 2%, and X°z" based on a multidimen-
sional angular analysis of the cascade-decay final states,
which greatly improves the resulting precision. The data
sample used in this analysis corresponds to an integrated
luminosity of 567 pb~! collected with the BESIII detector
at BEPCII at center-of-mass (CM) energy of 4.6 GeV.

Since the close proximity of the CM energy to the AF A7
mass threshold does not allow an additional hadron to be
produced, AfA; are always generated in pairs, which
provides a clean environment to study their decays. When

one A/ is detected, another A7 partner is inferred. Hence,
to increase signal yields, we adopt a partial reconstruction
method, in which only one A/ is reconstructed out of all
the final-state particles in an event. The charge conjugation
modes are incorporated in the analysis, and they are always
implied in the context, unless otherwise stated explicitly.

II. DATA ANALYSIS

Details of the BESIII apparatus, the software framework
and the Monte Carlo (MC) simulation sample have been
given in Ref. [27]. The A} signal candidates are recon-
structed through the decays into pK%, Az*, Ztz° and
397+, Here, the intermediate particles K3, A, =+, 0 and 7°
are reconstructed via the decays K0 —>atn, A— prn~,
>t = pa®, ¥ - yA, and 72° = yy. The event selection
criteria follow those described in Ref. [27], unless other-
wise stated explicitly. To suppress the Al — pKY, K% —

7°7° events in the >+ 70 candidate samples, the invariant
mass of the 7°z° system is required to be outside the
range [400, 550] MeV/c?.

For each signal decay mode, the yields are obtained from
a fit to the beam-constrained mass (Mpc) distribution,

Mgc = \/Ed i — pf\;, where E,.,, is the average beam

energy and p,+ is the measured A} momentum in the CM
system of the e e~ collisions. If more than one candidate is
reconstructed in the event, the one with the smallest energy

400

‘Ar— pK° IAf—AT
600 S ot
L % 3000
> (@) B (b)
2 a0l 3
400 L
] [ I 2000
S H
= L
g & 100 -
P IR b 4
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M, (GeV/c?) M, (GeV/c?)
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2 | © Y@
£ F )
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E r P £
g fo g |
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FIG. 1. Fits to the Mpc spectra of the signal candidates of

(@ Af—-pK% b Af-Azt, (©) A —-Xtz% and
(d) A} — X%z". Points with error bars correspond to data, solid
lines are the fitting curves, dashed lines describe the signal events
distribution, dash-dotted lines show the Type-II backgrounds and
shadowed areas correspond to Type-I backgrounds. Dashed and
solid arrows show the sideband and signal regions, respectively.
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difference (|AE|) is kept, where AE = E)+ — Ejeqm, and
E,+ is the measured total energy of the A/ candidate.

Figure 1 shows the My distributions for the signal
candidates, where the A} signal peak is evident at the
nominal A} mass. The backgrounds can be classified into
two types. The Type-I backgrounds are from the true A}
signal decays, where at least one of the final state particle
candidates is wrongly assigned in reconstruction. The
Type-II backgrounds correspond to combinatorial back-
grounds mostly from ete™ - gg(g = u,d, s) processes.
To evaluate the Type-I and Type-II background level,
unbinned maximum likelihood fits (shown in Fig. 1) are
applied to the Mpc spectra. The signal and Type-I back-
ground shapes, as well as the ratio of their yields, are
derived from the signal MC simulation samples. These two
shapes are convolved with a common Gaussian function,
whose width is left free and represents the difference in
resolution between data and MC simulations. The type-II
background shape is modeled by an ARGUS function
[28]. The A/ signal and sideband regions are chosen
as [2.278,2.294] GeV/c?> and [2.250,2.270] GeV/c?,
respectively.

III. DECAY ASYMMETRIES MEASUREMENT

The decay asymmetry parameters are determined by
analyzing the multi-dimensional angular distributions,
where the full cascade decay chains are considered. The
full angular dependence formulas (4), (6), and (10) in
Ref. [26], constructed under the helicity basis, are used in
the fit. To illustrate the helicity system defined in this
analysis, we take as an example the two-level cascade
decay process Aj — Az", A — pz~ following the level-0

S

CM frame A} rest frame

A rest frame A rest frame

FIG. 2. Definition of the helicity frame for ete™ — AFA7,
Af - Ant, A - pr.

process eTe” — y* — ATAZ. An analogous formalism is
applied to the other A7 — BP decays.

Figure 2 illustrates the definitions of the full system of
helicity angles for the A7 — Az mode. In the helicity frame
of ete™ = AFAZ, 6, is the polar angle of the A with
respect to the e™ beam axis in the e™ e~ CM system. For the
helicity angles of the A} — Az™ decay, ¢, is the angle
between the e Al and Az planes, and 0, is the polar angle
of the A momentum in the rest frame of the A with respect to
the Al momentum in the CM frame. The angle subscript
represents the level numbering of the cascade signal decays.
For the helicity angles describing the A — pz*t decay, ¢, is
the angle between the Az plane and pz~ plane and 0, is the
polar angle of the proton momentum with respect to opposite
direction of z momentum in the rest frame of A. For the
three-level cascade decays Al — X0zt, 20 = Ay, A —
pr~ process, ¢; is the angle between the Ay and pza~
planes, while 65 is the polar angle of the proton with respect
to the opposite direction of the photon momentum (from
>0 — Ay) in the rest frame of A.

In Ref. [26], we define A as the phase angle difference
between two individual helicity amplitudes, H;, ,,, for the
A production process y* — A (4;)A7 (4,) with total heli-
cities [4; — 4,] = 0 and 1, respectively. In the case where
one-photon exchange dominates the production process, A
is also the phase between the electric and magnetic form
factors of the A} [25,29]. The transverse polarization
observable of the produced A} can be defined as

Pr(cosy) = /1 —adcosbysinbysindy, (1)

whose magnitude varies as a function of cos 6, and «, is the
angular distribution parameter of charmed baryon defined by
the helicity amplitudes ay = (|Hyp_12|* = 2|H} 2.1 2%)/
(|Hija-1/2* +2|H /21 /2/?). Similarly, two parameters, a7
and ABP, describe the level-1 decays A — Azx*, "2 and
07", where ABP is the phase angle difference between the
two helicity amplitudes in the BP mode. The Lee-Yang
parameters [26,30] can be obtained with the relations

ﬁBP =1/ 1- (GEP)Z Sil‘l A]BP,

vep = /1 = (agp)* cos AP”. (2)

In the angular analysis, the free parameters describing
the angular distributions for the four data sets are deter-
mined from a simultaneous unbinned maximum likelihood
fit, as @y and A, are common. The likelihood function is
constructed from the probability density function (PDF)
jointly by
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TABLE 1. Parameters measured in this analysis.

Parameters A — pK§ Ar* >0 Ozt

Ahp 0.18 £0.43 £0.14 -0.80 £0.11 £0.02 -0.57 £0.10 £ 0.07 -0.73 £0.17 £ 0.07

atp (PDG) e —-0.91 £0.15 —0.45+£0.32 e

or 0.06°435°083 066835102 0.48°0354007

Yp - —~0.601505 003 —0.481033 05 049033047

ABP(rad) 30£24+£1.0 41+1.1£0.6 08+12+£02

Nawa significance of 2.1¢ according to a likelihood ratio test.

Liaa = H Is(8). (3)  This indicates that transverse polarization Py of the A is

i=1

Here, f S(E) is the PDF of the signal process, Ny, 1S the
number of the events in data and i is event index. The signal

-,

PDF f¢(&) is formulated as

-

’

@MEDP
(O)IM(&)Pde

Fs(@) =5 : 4
6 e : (4)

where the variable E denotes the kinematic angular observ-
ables, and 7 denotes the free parameters to be determined.

-,

M(&) is the total decay amplitude [26] and (&) is the
detection efficiency parametrized in terms of the kinematic

variables E The background contribution to the joint
likelihood is subtracted according to the calculated like-
lihoods for the type-I background based on inclusive MC
simulations and for the type-II background according to the
My sideband. With a MC sample of sufficiently large size,
the integration of the normalization factor is calculated as
follows

N .= 1 Nuc -
[e@MEDRE= =Y MG
gen o

where N, is the total number of MC-simulated signal
events. Nyc is the number of the MC signal events survived
from the full selection criteria and kyc is its event index.

Minimization of the negative logarithmic likelihood with
background subtraction over all the four signal processes is
carried out using the MINUIT package [31]. Here, o is fixed
to the known value —0.20 [29]. For the charge-conjugation
A7 decays, under the assumption of CP conservation,
Ay =4, ajp=—ag;, and AFF = —APP. The decay
asymmetry parameter a, for A — pz~ is taken from the
recent BESIII measurement [24] and ay+ for =+ — pza°
from the Particle Data Group (PDG) [2]. In the fit, the
statistical uncertainty of parameters in question is deter-
mined by the MINUIT package, which corresponds to the
change of one-standard-deviation value of log-likelihood
function. From the fit, we obtain sinAy = —0.28 &+
0.13(stat.) which differs from zero with a statistical

nonzero when sin(26,) # 0. The numerical fit results are
given in Table I, together with the calculated yzp and fgp.

In Fig. 3, the fit results are illustrated using several
projection variables. The data are compared with the MC
generated events reweighted according to the fit.

For the A] — Az" and 7% decays, if all angles are
integrated over except for the angle 6,, the decay rate
becomes [32]

dN
dcos 6, o1+ a:\rﬁ(yﬂO)a/\(zm cos 6,. (6)
80 [Af—>ATH @)

Events/0.1
Events/0.1

S + “~a L +
D fer) E
g o t 1] % f
2 + e T+ T
05F 05
1 . . .
-1 0.5 0 0.5 1
cos0,
~ E
o 02F
2 3
) E
o 01f
£ 3
z f
T 0p
~
g H
£ -01
=)
7
>~ 02

cosf,

FIG. 3. cos#, distributions in (a) Az, and (b) =*7°; (c) aver-
age value of cos@; as a function of cosé,, and (d) average
value of cosé, as a function of cosf; in Af — X0zt;
(e) (sign(agp)sinf;singh;) as a function of cos @, for all the
four signal channels. Points with error bars correspond to data;
(red) solid lines represent the MC-determined shapes taking into
account the fit results; (green) dash-dotted lines represent the
Type-II background and shaded histograms show the type-I
background.
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Equation (6) shows a characteristically longitudinal polari-
zation of the produced A(X") from the A} decays, and the
asymmetry of cos 0, distribution reflects the product of the
decay asymmetries aXﬂaA(a;”an) [33]. The distribu-
tions of cos#, in the Af — Az" and X*7° modes are
shown in Figs. 3(a) and (b), respectively. The drop at the
right side in Fig. 3(b) is due to the K§ — 7z°2° veto.

For the A7 — X%z decay, the correlations of cos 8, and
cos @5 in the subsequent level-2 decay X% — yA and level-3
decay A — pz~, are shown in Figs. 3(c) and (d), respec-
tively. The correlation of the average value of cosé;
satisfies the relation

1
(cos®;) = —ga;ﬂa,\ cos 0, (7)

with (i, j) = (2,3) or (3, 2).

If the full expressions for the joint angular distributions
(Ref. [26]) are integrated over the angles of the level 2 and 3
decay products, the remaining partial decay rate W is

W | + aycos’0y + Pragp sin 0, sin ¢, . (8)
Therefore, in a given cos 6, interval,

& [1, sin @, sinp; Wd cos 0,d¢p,
& [, Wdcos 0,dg,

<Sin91 Singb]) =

is directly proportional to agpPr(cosfy)/ (1 + aycos? 6;)
for the acceptance corrected data. In Fig. 3(e), the effect of the
transverse polarization Py (cos ) is illustrated by plotting
the average value (sign(agp)sin®; sing;) from all four
decay modes and including both particles and antiparticles.
The sign function of the measured decay asymmetry param-
eter, sign(agp), is used to avoid the cancellation of con-
tributions from the opposite charge modes.

IV. SYSTEMATIC UNCERTAINTIES

The systematic uncertainties arise mainly from the
reconstruction of final state tracks, K§ — z°2° veto, AE
requirement, signal Mpc selections and background sub-
traction. The contributions are summarized in Table II. The
uncertainty due to the input &y is found to be negligible, after
considering the experimental uncertainty [29]. Systematic

uncertainties from different sources are combined in quad-
rature to obtain the total systematic uncertainties.

To understand the reconstruction efficiencies in data and
MC simulations, a series of control samples are used for
different final states. The proton and charged pion are
studied based on the channel J/w — ppza™z~, photon on
ete” —» yutu [34], 7° on w(3686) - 2°2°J/y and
ete” = wn®, A on J/y — pK*A and J/y — AA [35],
and K9 on J/y — K*(892)*K~, K*(892)" — K$z* and
J/y — ¢K2K+7r‘ [36]. The efficiency differences between
data and MC simulations are used to reweight the summed
likelihood values. The changes of the fit results after
likelihood minimization are taken as systematic uncertain-
ties. The uncertainties due to the K% — 7°2° veto in *z°
candidate events are evaluated by taking the maximum
changes with respect to the nominal results when varying
the 7°2° veto range. A similar method is applied when
estimating the systematic uncertainties from the signal AE
and Mpc selection criteria. The background contributions
are modeled with the sideband control samples and the
inclusive MC samples, and then subtracted from the data
likelihood function. The associated uncertainties are stud-
ied by varying the sideband range and adjusting the scaling
factors of the two background components. The altered
scaling factors are obtained by changing the background
lineshapes within their 1o uncertainties from the fits to the
My distribution. The resultant maximum changes of the fit
results are taken as corresponding systematic uncertainties.

V. SUMMARY

To summarize, based on the 567 pb~! data sample
collected from ete~ collisions at a CM energy of
4.6 GeV, a simultaneous full angular analysis of four decay
modes of A} — pK%, Az*, t7°% and Xz from the
ete™ = AFA7 production is carried out. We study the A,
transverse polarization in unpolarized et e~ collisions for
the first time, which gives sin Ay = —0.28 +0.13 +0.03
with a statistical significance of 2.16. This information will
help in understanding the production mechanism of the
charmed baryons in ete™ annihilations. With availability
of the transverse polarization measurement, the decay
asymmetry parameter in A — ng becomes accessible
experimentally. Moreover, this improves the precision in

TABLE II. Summary of the systematic uncertainties. A, B, C and D stand for the modes of pK(S), AxT, Z+7°, and =0z, respectively.

Source af ag al a sin A, A AS AP
Reconstruction 0.00 0.00 0.00 0.01 0.00 0.8 0.0 0.0
7°7° veto 0.01 0.00 0.01 0.00 0.00 0.0 0.2 0.0
AE signal region 0.07 0.01 0.02 0.05 0.02 03 0.1 0.1
Mgy signal region 0.12 0.01 0.05 0.02 0.02 0.5 0.4 0.1
Background subtraction 0.03 0.01 0.05 0.04 0.02 0.3 0.3 0.0
Total 0.14 0.02 0.07 0.07 0.03 1.0 0.6 0.2
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determining the decay asymmetry parameters in
AF = Az, =70, and X0z, as listed in Table 1.
The parameters a;KO and agoﬁ are measured for the first
N

time. The measured aj\“”+ and a;”o parameters are con-
sistent with previous measurements, but with much
improved precisions (by a factor of 3 for a;ﬂo). The
negative sign of the a;”() parameter is confirmed and
differs from the positive predictions [10—15] by at least 8o,
which rules out those model calculations. The measured
ay. , and &, , values agree well, which supports hyperon

isospin symmetry in A} decay. For the results on a;Kg ,
oy, o, and af, . listed in Table I, at present no model gives
predictions fully consistent with all the measurements.
These improved results in A decay asymmetries provide
essential inputs for the b-baryon decay asymmetry mea-
surements to be performed in the future.
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