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Based on (4.48 +0.03) x 10® w(3686) events, collected with the BESIII detector at the

BEPCII storage ring, five k. hadronic decays are searched for via the process y(3686) — n%h,.

Three of them, h, — pprta~, zta 2, and 2(z*7)z°, are observed for the first time with

significances of 7.40, 4.60, and 9.1c, and their branching fractions are determined to be
(2.89 £0.32 £0.55) x 1073, (1.60 4 0.40 +0.32) x 1073, and (7.44 £0.94 4 1.52) x 1073, respec-
tively, where the first uncertainties are statistical and the second systematic. No significant signal
is observed for the other two decay modes, and the corresponding upper limits of the branching
fractions are determined to be B(h, — 3(zt77)2") <8.7x 1073 and B(h, - K*K zt7n") < 5.8 x
10~* at the 90% confidence level.
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The study of charmonium states is crucial for reaching a
deeper understanding of the low-energy regime of quantum
chromodynamics (QCD), a theory describing the strong
interaction, which has been tested successfully at high
energy. Since its discovery in 2005 [1,2], there have been
few measurements of the decays of the spin-singlet char-
monium state /.('P,). Its best-measured decay is the
radiative transition s, — yn. [3—5], while the sum of the
other known 4, decay branching fractions is less than 3%
[6]. Among these measurements, there is only evidence for
one h, hadronic decay, h, — 2(z*z7)z°, which was
reported by CLEO-c with a statistical significance of
440 [7].

Improved measurements and observation of new #h,
hadronic-decay modes will shed light on the A, decay
mechanism, and be helpful for guiding the development
of QCD based models. For example, perturbative QCD
(pQCD) [8—10] and nonrelativistic QCD (NRQCD) [11-13]
are two alternative models for describing features of low-
energy QCD, and their predicted ratios of the hadronic width
of the /i to that of the 5 (I}**/T}%) are very different [14],
as is the corresponding ratio involving decays of J/w
mesons (I} /T40). New studies of &, hadronic decays

will enable these ratios to be measured, and comparisons to
be made with the theoretical predictions.

The discovery of /. hadronic decays provides new tag
channels that can be used in XYZ (charmonium-like)
studies with h,. as the intermediate state. This would
provide a boost in signal yield comparable to that available
from the tag channel k. — yn,., n, — hadrons, which is the
only mode applied at present.

Improved studies of 4. decays can be made with the
large y(3686) sample of 4.48 x 10® events [15], produced
via eTe~ collisions, which has been collected with the
BESIII detector. In this paper, we report the first observa-
tions of decays h, — ppatn~, ntn~ 2% and 2(zt7)a",
and upper limits of the branching ratios for the decays
he = 3(z*27)z° and K* K-zt n.

The BESIII detector [16] is a general purpose detector
with a 93% solid angle coverage. A small-cell helium-
based multilayer drift chamber (MDC) determines the
momentum of charged particles in a 1 T magnetic field
with a resolution of 0.5% at 1 GeV/c, and measures their
ionization energy loss (dE/dx) with resolutions better than
6%. A CsI(T1) electromagnetic calorimeter (EMC) mea-
sures the photon energies with resolutions 2.5% (5.0%) in
the barrel (end caps). A time-of-flight system (TOF),
composed of plastic scintillators with resolution of 80 ps
(110 ps) in the barrel (end caps), is used for particle
identification (PID). A resistive plate chambers based muon
counter with 2 cm position resolution is used for muon
identification.

To obtain the detection efficiencies, signal Monte
Carlo (MC) samples for the processes y(3686) — 7°h,.,

and h, — pprta, xta a°, 2(xtx)a’, 3(xt )2, or

KTK~n"z~ are generated based on phase-space distribu-
tions. To investigate the background, an inclusive MC
sample of 5.06 x 10% w(3686) events is generated, in
which the w(3686) resonance is produced with KKkmC
[17,18]. Decays with known branching fractions obtained
from the Particle Data Group (PDG) [6] are generated with
EVTGEN [19], while the other decays are generated with
LUNDCHARM [20]. In all the simulations, the GEANT4-
based [21,22] package BOOST [23] is used to model the
detector responses and to incorporate time-dependent beam
backgrounds.

In the following, we denote decay modes w(3686) —
7°h, withh, — pprata=, 2t 2, 2(xt 22", 3(nt ) 2",
and K* K~z 7~ as modes I, II, III, IV, and V, respectively.
Events are selected with the expected number of charged
particle candidates, and at least two photon candidates for
modes I and V, and four for modes II, III, and IV. Each
charged track reconstructed in the MDC is required to be
within 10 cm of the interaction point along the beam
direction and 1 cm in the plane perpendicular to the beam.
The polar angle @ of the tracks must be within the fiducial
volume of the MDC (| cos 6| < 0.93). The TOF and dE/dx
information of each charged track is used to calculate
the corresponding probabilities of the hypotheses that a
track is a pion, kaon or proton for particle identification.
Electromagnetic showers are reconstructed by clustering
energies deposited in the EMC, and in the nearby TOF
counters. A photon candidate is such a shower with a
deposited energy larger than 25 MeV in the barrel region
(Jcos@] <0.8) or 50 MeV in the end cap region
(0.86 < |cos@| <0.92). The time ¢ measured in the
EMC with respect to the start of the event is required to
be 0 < ¢ < 700 ns, to suppress electronic noise and beam-
associated background. The angle between the photon and
the extrapolated impact point in the EMC of the nearest
charged track must be larger than 10° for charged pions and
20° for protons, respectively, to ensure that the cluster is not
from that track.

Following the application of a vertex fit that constrains
all the charged tracks to arise from a common interaction
point, a kinematic fit is then performed to further
improve resolution and suppress background. The kin-
ematic fit applies constraints on the four-momentum
conservation between initial and final states, and imposes
the nominal z° mass [6] on yy pairs within the interval
107 < M(yy) < 163 MeV/c?). If there is an excess of
photon candidates in the event, then all combinations are
considered and the one with the smallest y? is kept. The y?
is required to be less than a specific value determined by
maximizing S/+/S + B, which is considered as a figure of
merit (FOM). Here, S is the number of signal events from
MC simulation normalized to the preliminary result mea-
sured with the unoptimized selection criteria and B is the
number of background events extracted from the inclusive
MC sample. The FOM is maximized in the /4, signal region
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|[RM(7°) —3.525| < 8 MeV/c?, where RM(z") is the
recoiling mass of the z° meson, with the lower energy
candidate chosen in the case of multiple z° s in the event.

To suppress contamination from decays with different
numbers of photons to the signal modes, such as the
dominant background decay w(3686) — yy.,, where the
Yo decays to the same final states as the h., y3. exp <
Xic.unexp 15 Tequired for each decay mode. Here yjc ., is
obtained from the four-momentum kinematic fit that
includes the expected number of photons in the signal
candidate, i.e., two for modes I and V, and four for
modes II, ITI, and IV, while )(iciunexp is obtained from a
fit including an unexpected number of photons, i.e., one for
modes I and V, and three for modes II, III, and IV.

Mass windows, optimized simultaneously with the
FOM, are applied to suppress the background contributions
from y(3686) decays to 7w, 7%, 2°2°J /yr and 777~ J /s,
and are listed in Table 1. The residual contamination is
estimated with the inclusive MC sample.

Figure 1 shows the recoiling mass distribution of zr?, the
lowest energy 7° candidate, obtained by applying the above
selection criteria. Clear &, signals are observed in the
modes h, — pprta~, atn" 2%, and 2(z7")x°, while no
obvious signal is observed for h.— 3(z"z7)z° and
K*K~n*zn~. For the decay mode h. — 2(z* 7~ )n°, there
are 11.0+3.3+2.5 peaking background events from
w(3686) — n°h,, h, — yn,, where the first uncertainty is

TABLE 1.
denotes the invariant mass \/p?, where p is the z+7~z° four

momentum. RM denotes the recoiling mass 4/ (py,36s6) — P>,

where py,(3686) i the y(3686) four momentum, and p is the

atn, 797°, or z° four momentum. m denotes the nominal mass
[6] of the indicated particle. ﬂ,’? (ﬂ,’2) denotes the z° candidate with

lower (higher) energy.

Mass windows imposed in background rejection. M

Mode Mass windows (MeV/c?)
I |[RM(ztz™) —m(J/w)| > 18
M (7= 7%) —m(n)| > 14
M(zta2°) — m(w)| > 6
I |IRM(2970) = m(J /y)| > 74
[RM (0) — m(w)| > 32
I |[RM (297) — m(J /y)| > 20

[RM (T x~) — m(J/y)| > 22
Mzt a=a) = m(n)| > 16
M(zta20) — m(w)| > 20

v |IRM (n97) —m(J /y)| > 18
[RM (7" 7~) — m(J/y)| > 20

Mz 7 ) - m(n)] > 16
\Y |RM(nt7~) —m(J/y)| > 22
M (z* 7= 7°) = m(n)| > 16

M(ztz~ ") — m(w)| > 20

—e— Data
— Fit Result

Fitted Background
— - — Fitted Signal
Background MC
= \41(3686)~>~{)(52

—e— Data
— Fit Result
Fitted Background
— - — Fitted Signal
Background MC
B \|/(3686)~>«{xcz

—e—Data
— Fit Result n
Fitted Background ]
—-— Fitted Signal
Background MC
V(3686)->vy ,
(3686) -y,

— Fit Result
Fitted Background
—-— Fitted Signal
Background MC
V(3686)->vx,,

—— Dellla '

— Fit Result 1
Fitted Background —

—-— Fitted Signal -
Background MC

v (3686)-51x ,

Events/(1.1 MeV/c®) Events/(1.1 MeV/c?) Events/(1.1 MeV/c?) Events/(1.1 MeV/c?) Events/(1.1 MeV/c?)

%.5 351 352 353 354 355
RM(n°) (GeV/c?)

FIG. 1. Recoiling mass spectra of the lowest energy 7Y, in the
decay chains w(3686) — 7°h, with h, — ppata~ (), ztn a°
(ID), 2(z* 727 )a° (M), 3(z*7")x° (IV), and KK~ z"z~ (V). In
each spectrum, the dots with error bars represent data, the
pink shaded histogram is the background process y(3686) —
YXe, the blue filled histogram is the background process
w(3686) — 7°h,, h. — yn., the green filled histogram is the
background from inclusive MC, the cyan dashed curve is the
fitted background, the red dash-dotted curve is the fitted signal,
and the blue curve is the fitted result.

statistical and the second systematic, while no peaking
background is found for the other decay modes, based on
inclusive MC. The remaining background from y(3686) —
Y¥e 1s negligible for all the decay modes except
h, > K"K z"z~, which will therefore be considered
separately in the fit below. The background contributions
from the continuum processes are studied with a 44 pb~!
data set taken at /s = 3650 MeV, which yields no A,
candidates in any of the final states analyzed.

To obtain the number of signal events, an unbinned
maximum likelihood fit is performed to the corresponding
mass spectrum, as shown in Fig. 1. In each fit, the signal is
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TABLE II.

Results of the analysis. Here e denotes the selection efficiency, N, denotes the 4, signal yield, B,(3636) and 5, denote the

branching fraction B(y(3686) — 7z°h,) and B(h. — hadrons), respectively, S.S. is the significance of the signal peak, including
systematic uncertainties, and BEPC’ denotes the branching fraction of /4, — hadrons from the PDG [6]. Only statistical uncertainties are

presented for signal yields, while for the (product) branching fractions, the first uncertainty is statistical and the second systematic. For
the decay mode h, — 3(z* 7~ )z both the branching fraction and upper limit are listed.

Mode e( %) N By 3686) * By, (107°) B, (107) S8 BPe(107%)

I h. — pprta 20.9 230 £25 249 £0.27+0.28 2.89 £0.32+0.55 740 e

I h, = nta=a° 16.8 101 £ 25 1.38 £0.35 +£0.17 1.60 +0.40 £ 0.32 4.60 <2.2

I he = 2(atn)a° 9.1 254 +£32 6.40 £0.81 £0.87 744 £094 £1.52 9.16 22f78

v he = 3(x 770 42 73434 400+ 1874070 46542174108 210 <29
<136 <75 <8.7

% he — K Kntn 181 <40 <05 <0.6

described with the MC simulated shape convoluted
with a Gaussian function, and the background is described
with an ARGUS function [24], except for the mode
h. — K™K~ z"n~, where an additional background com-
ponent from w(3686) = yxw. ¥ = KT K zta™ s
included. Here, the MC shape includes the intrinsic /4,
line shape and detection resolution, while the Gaussian
function accounts for the discrepancy between data and
MC simulation in the mass resolution. All the parameters of
the Gaussian and ARGUS functions, except the threshold
value of 3551 MeV/c?, are floated in the fit.

Branching fractions are calculated based on the formula,

¢

Ny
B, =
" B(y(3686) — 7°h,) - B(z" = 17) - Ny es6) - €

El

(1)

where B, represents the branching fraction of the given
signal mode, while B(y(3686) — z°h.) and B(z" — yy)
are the branching fractions of w(3686) — 7%k, and
7% — yy, respectively, N n, and N g86) are the numbers

of h, signal and y(3686) events, respectively, and ¢ is the

TABLE III. Relative uncertainties (in %) on the branching
fractions.

Source 1 1T I v \"
Tracking 5.0 2.0 4.0 6.0 4.0
Photon 2.0 4.0 4.0 4.0 2.0
7° reconstruction 1.0 2.0 2.0 2.0 1.0
PID 4.9 2.0 4.0 6.0 4.0
Kinematic fit 1.8 2.2 3.7 4.2 1.5
Number of (3686) 0.7 0.7 0.7 0.7 0.7
Fitting range 2.6 3.5 4.9
Signal shape 1.3 8.1 2.5

Background shape 2.1 35 29

Resolution 4.2 5.1 33

Ne 1.5
Physics model 6.3 2.6 8.2 14.1 7.3
Sum 11.3 12.5 13.6 17.6 9.6

selection efficiency obtained from signal MC simulation.
Since no significant signal is observed in the decays h. —
K*K=n"z~ and 3(z* 72~ )a", their upper limits are deter-
mined with a Bayesian method [25]. With the fit function
described before, we scan the number of signal yield to
obtain the likelihood distribution, and smear it with the
systematic uncertainties. The upper limits of the number of
signal yield N,” at the 90% confidence level are obtained

up
via [} F(x)dx/ [ F(x)dx = 0.90, where F(x) is the
probability density function of the likelihood distribution.
All the numerical results, including selection efficiencies,
signal yields, branching fractions or upper limits and
significances, are listed in Table II.

The sources of systematic uncertainties for the product
branching fractions include tracking, photon and z°
reconstruction, PID, the kinematic fit, the number of
w(3686) events, fitting procedure, 7. peaking background,
mass windows and the physics model describing the 7,
production and decay dynamics. All the systematic uncer-
tainties are summarized in Table III, and the overall
systematic uncertainties are obtained by summing all
individual components in quadrature. In addition, we
add a relative systematic uncertainty of 15.2% associated
with the branching fraction of y(3686) — 7%k, in calcu-
lating the branching fraction of the A, hadronic decays.

The uncertainties on the tracking efficiency are estimated
with the control samples y(3686) — zz~J/y, J/w —
KYK*z¥ and w(3686) — pprta~, and are determined to
be 1.0% [26], 1.0% [27], 1.3%, and 1.7% for each charged
pion, kaon, proton, and antiproton, respectively. The
uncertainties on the photon and z° reconstruction efficiency
are studied using the control sample J/y — 7277~ 7°, and
are determined to be 1.0% per photon [28] and 1% per z°
[28]. The PID uncertainties are determined to be 1.0% per
pion [29], 1.0% per kaon [27], 1.3% per proton and 1.6%
per antiproton, based on the same samples used to estimate
tracking uncertainties. The uncertainty associated with the
kinematic fit is estimated by comparing the efficiencies
with and without the helix parameter correction [30].
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TABLE IV. The ratios of the hadronic decay widths of /4, to 7,
(O /Thd) and h, to J/y (D} /Th4). The theoretical predic-
tions of the total hadronic decay ratios are based on pQCD
and NRQCD [14], which are expected to be correct also for
exclusive decay modes. The experimental measurements of the
ratios of the partial decay widths for ppztn~, K"K~ z"n~, and
n(z*a")a%(n =0,1,2) modes are calculated based on the
measured branching fractions in this analysis and the PDG [6].

Model/mode Ratio
[pad /e pQCD 0.010 & 0.001
NRQCD 0.083 +0.018
pprtr 0.012 £ 0.008
KtK nta~ <0.083
e /e pQCD 0.68 £ 0.07
NRQCD 8.03 + 1.31
pprta” 3.63 £2.25
xtn n° 0.57 +0.38
2(zta)a" 1.43 £0.90
3(ata)a® <2.26
KtK ntn~ <0.68

The uncertainty on the number of y(3686) events is 0.7%,
according to the study in Ref. [15].

The fitting range, signal and background descriptions,
and the difference in resolution between data and simu-
lation are considered as sources of systematic uncertainty
related to the fitting procedure. These uncertainties are
assigned by varying the boundaries of the fitting ranges by
+10 MeV/c?, changing the signal description from the
shape determined from the simulation to a Breit-Wigner
function, and replacing the ARGUS function describing the
background with a second-order Chebychev polynomial.
The difference between the results obtained by fixing and
releasing the resolution in the fit is taken as the uncertainty
on the knowledge of this quantity, where in the former
case a correction of 1 MeV/c? is first applied to the value
from the simulation, as determined from a control sample
w(3686) = yy. — ypprnta=. For h, = 3(z*27)n" and
KtK~n"z~, the largest upper limits are taken with differ-
ent combinations of fitting models and ranges. The uncer-
tainty due to 7, peaking background is assigned from the
statistical uncertainty on the fit result for this component,
and the corresponding uncertainty on the branching
fractions.

A systematic uncertainty due to the physics model arises
from the limited knowledge of the intermediate states in &,
decays. Searches have been performed for intermediate
states contributing to modes I to III, which are detailed in
the Supplemental Material [31]. Possible contributions are
found for several such states, which include a p° peak in
each projection of the z7z~ invariant mass. The effect of
these states on the selection efficiency is evaluated by
generating alternative simulation samples with different
properties and comparing with the default production.

In summary, three 4. hadronic decays, h, — pprtn~,
h. — nta~x° and h, — 2(x" 7" )x°, are observed for the
first time, and two channels, 7, > K"K ztz~ and
h. — 3(n"n")n°, are searched for. The measured branch-
ing fractions or upper limits, as well as the significance of
the signal peaks, are listed in Table II. The measured
branching fraction of 4, — 2(z*z~)z" is more precise than
the CLEO-c result [7] and lower in value, although
consistent within uncertainties. The sum of the branching
fractions of the three observed channels is approximately
1.2%, which is still smaller than the &, radiative transition
to the 7., and does not yet allow a conclusion on whether
the total hadronic decay width of the #.. is of the same order
as its radiative transition. Table IV shows the comparisons
of the measured ratios of the hadronic decay widths
)2/ and T3/T and the theoretical predictions.
The experimental results tend to favor the lower predic-
tions, which come from pQCD. However, in Ref. [14], the
theoretical prediction of B(h, — yn.) = (41 + 3)% based
on NRQCD is favored by the experimental measurement
(51 +6)% [6], compared with the prediction of (88 + 2)%
from pQCD. We note that the experimental measurements
are still limited by low statistics and the predictions of the
theoretical models can be modified through considerations
such as normalization scale or relativistic corrections
[32,33]. Future experimental measurements of higher
precision, and improved theoretical calculations will help
to resolve this inconsistency.
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