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a b s t r a c t

In this paper, a new approach is proposed for stability issues of neutral-type neural
networks (DNNs)with constant delay. First, the semi-freeweightingmatrices are proposed
and used instead of the known freeweightingmatrices to express the relationship between
the terms in the Leibniz–Newton formula to simplify the system synthesis and to obtain
less computation demand. Second, global exponential stability conditions which are less
conservative and restrictive than the known results are derived. At the same time, based
on the above approach, fewer variable matrices are introduced in the construction of the
Lyapunov functional and augmented Lyapunov functional. Two examples are given to show
their effectiveness and advantages over others.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that delayed neural networks (DNNs) share the potential benefits of neural networks (NNs) such as
parallel distributed processing, high computation rates, fault tolerance, and adaptive capability. In the past decades, DNNs
have been extensively used in various engineering and scientific fields for the above benefits, and the trait of time delay
has been found in engineering applications, for example, solving linear projection equations and quadratic optimization
problems [5], component detection of medical signal [26], automatic control engineering [27], analysis of moving images or
speech [6], biological simulation [28] and so on. However, the existence of time delays in these DNN models indicates that
time delays are dependent on the past state. In fact, many practical delay systems can be modeled as differential systems of
neutral type, whose differential expression concludes not only the derivative term of the current state but also concludes
the derivative term of the past state, such as partial element equivalent circuits [7] and transmission lines [8] in electrical
engineering, controlled constrainedmanipulators inmechanical engineering [9], population dynamics system [1] and so on.
It is natural and important that systems should contain some information about the derivative of the past state to further
describe and model the dynamics for such complex neural reactions [10].
However, few researchers studied the stability for a class of DNNs which is described by nonlinear delay differential

equations of the neutral type [10,11,29]. Park et al. studied the global asymptotic stability of delayed neural networks of
neutral type in [10]. Two sufficient globally exponential stability conditions for such systems were proposed in [11,29].
In [11], an inequality was used to derive the result, which made the criteria more conservative. However, there are too
many matrices included in the stability criterion in [10,29]. Motivated by the aforementioned discussion, the exponential
stability of DNNs of neutral type which gives a fast convergence rate and estimates the exponential convergence rates for
the system is considered in this paper.
In order to derive some delay-dependent stability criteria, a model transformation [2,12,13] and the bounded technique

on the cross term are used in [14–16]. In addition, a descriptor model transformationwhich is also based on the substitution
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of x(t) −
∫ t
t−τ ẋ(ξ)dξ for x(t − τ) is applied to derive less conservative conditions in [17–19]. Gu proposed the discretized

Lyapunov functional method in [3,20,21]. Recently He et al. proposed a new approach which is, applying free weighting
matrices into the Leibniz–Newton formula [22,23]. Both of them are very efficient. However, many researchers have found
that too many free variables introduced in the free weighting matrices method will make system synthesis more complex
and consequently lead to a significant increase in the computational demand [24].
He has also noted in [22] that the −

∫
−d(t)
−τ

ẏT(t + ξ)Zẏ(t + ξ)dξ in V̇ (y(t)), where d(t) satisfies that 0 < d(t) ≤ τ ,

0 < |ḋ(t)| ≤ u is a time-varying differentiable function, was not considered in most of the previous works of time-
varying delayed systems, which leads to considerable conservativeness. The new free weighting matrices are introduced
to estimate the upper bound of the derivative of the Lyapunov functional. Inspired by this, we consider this approach to
deal with the augmented term related to d(t), which can not only be used for a time-varying delayed system, but also for
a constant delay system. In this paper, we consider the time-varying functions di(t), i = 1, 2, . . . ,m − 1, which satisfy
0 ≤ dm−1(t) ≤ dm−2(t) ≤ · · · ≤ d1(t) ≤ τ , τ > 0,max

{
|ḋ1(t)|, |ḋ2(t)|, . . . , |ḋm−1(t)|

}
≤ u, u > 0 and are

independent of the original system (1) (see Section 2). By dividing the delay interval [−τ , 0], we construct the following
Lyapunov–Krasovskii functional for system (1)

V2(y(t)) =
∫
−d1(t)

−τ

e2β(t+ξ)yT(t + ξ)M1y(t + ξ)dξ +
∫
−d2(t)

−d1(t)
e2β(t+ξ)yT(t + ξ)M2y(t + ξ)dξ

+

∫
−d3(t)

−d2(t)
e2β(t+ξ)yT(t + ξ)M3y(t + ξ)dξ + · · · +

∫
−dm−1(t)

−dm−2(t)
e2β(t+ξ)yT(t + ξ)Mm−1y(t + ξ)dξ

+

∫ 0

−dm−1(t)
e2β(t+ξ)yT(t + ξ)Mmy(t + ξ)dξ +

∫ 0

−τ

e2β(t+ξ)yT(t + ξ)Qy(t + ξ)dξ,

Mi, i = 1, 2, . . . ,m, and Q satisfy the following equations:

2[yT(t), yT(t − dm−1(t)), yT(t − dm−2(t)), . . . , yT(t − d1(t)), yT(t − τ)]

×Mi

[
e2β(t−di(t))y(t − di(t))− e2β(t−di−1(t))y(t − di−1(t))−

∫
−di(t)

−di−1(t)
e2β(t+ξ)ẏT(t + ξ)dξ

]
= 0,

and

2[yT(t), yT(t − dm−1(t)), yT(t − dm−2(t)), . . . , yT(t − d1(t)), yT(t − τ)]

×Q
[
y(t)− e−2βτy(t − τ)−

∫ 0

−τ

e2β(t+ξ)ẏT(t + ξ)dξ
]
= 0. (1′)

Since the numberm is to be determined, and theMi, i = 1, 2, 3, . . . ,m and Q are put in the Lyapunov–Krasovskii functional
V2(y(t)) which are different from the free matrices in [10,29], we call the Mi, i = 1, 2, . . . ,m, and Q semi-free weighting
matrices. Numerical examples are given to show their effectiveness and advantages over others.

2. Problem formulation and preliminaries

Rn denotes thendimensional Euclidean space, andRm×n is the set of allm×n realmatrices.‖·‖denotes the Euclideannorm
inRn orRm×n. Let the Euclideannorm ‖φ‖τ = sup−τ≤θ≤0 ‖x(θ)‖, ‖φ∗‖τ = sup−τ≤θ≤0 ‖ẋ(θ)‖ for a given continuous function.
AT denotes the transpose of matrix A, λMax(M) denotes the maximum eigenvalue of M , λMin(M) denotes the minimum
eigenvalue ofM .
In this paper, we study the following class of delayed neural networks described by a nonlinear neutral delay differential

equation:

ẋ(t) = −Dx(t)+ Af (x(t))+ Bf (x(t − τ))+ Cẋ(t − τ)+ J, (1)

with the initial condition

x(θ) = φ(θ), ∀θ ∈ [−τ , 0],

where n is the number of neurons in the indicated neural network, x(t) = [x1(t), x2(t), x3(t), . . . , xn(t)]T is the state
vector of network at time t , f (x(t)) = [f1(x1(t)), f2(x2(t)), f3(x3(t)), . . . , fn(xn(t))]T ∈ Rn is the activation functions and
J = [J1, J2, J3, . . . , Jn]T is the external constant inputs. D = diag(di) > 0, A = (aij)n×n, B = (bij)n×n, C = (cij)n×n are the
interconnection matrices representing the weight coefficients of the neurons. Throughout this paper, we always assume
that the activation functions are bounded and satisfy Lipschitz’s condition, i.e.

(H) There exist constants Li > 0 such that ‖fi(x)− fi(y)‖ ≤ Li ‖x− y‖, for any

x, y ∈ R, i = 1, 2, 3, . . . , n.
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It is easy to see that the condition (H) implies that the activation functions are continuous but not alwaysmonotonic. It is not
difficult to prove that system (1) has at least an equilibrium point by using the well-known Brouwer’s fixed-point theorem.
Suppose that x∗ = (x∗1, x

∗

2, . . . , x
∗
n)
T
∈ Rn is an equilibrium point of system (1), and let yi(t) = xi(t) − x

∗, i =
1, 2, 3, . . . , n, then system (1) can be rewritten as{

ẏ(t) = −Dy(t)+ Ag(y(t))+ Bg(y(t − τ))+ Cẏ(t − τ),
y(θ) = ϕ(θ), θ ∈ [−τ , 0], (2)

where y(t) is the state vector of the transformed equation (2) and

gi(yi(t)) = fi(yi(t)+ x∗i )− fi(x
∗

i ), i = 1, 2, 3, . . . , n. (3)

Obviously, the origin of system (2) is one of the equilibrium points (if many) of system (1). It is obvious that neural network
activation functions can be exactly ‘‘linearized’’ and shifted into an interval linear system under the condition (H). Recently,
the following ‘‘linearized’’ method was used in [13,30].
We define the time-varying bounded functions si(t), for i = 1, 2, 3, . . . , n,

si(t) =


gi (yi(t))
yi(t)

, yi(t) 6= 0,

0, yi(t) = 0.
(4)

Obviously, si(t) is piecewise continuous on R.
From (4) and the condition (H), we have 0 ≤ si ≤ Li. Furthermore, system (2) can be rewritten as{

ẏ(t) = −Dy(t)+ As(t)y(t)+ Bs(t − τ)y(t − τ)+ Cẏ(t − τ),
y(θ) = ϕ(θ), θ ∈ [−τ , 0], (5)

where s(t) = diag(si(t)) ≤ diag(Li) = L.

Definition 1. System (1) is said to be exponentially stable if there exist µ > 1, k > 0, such that for every solution x(t) of
system (1), we have

‖x(t)‖ ≤ µe−kt max{‖φ‖τ , ‖φ∗‖τ }.

Lemma 1 ([4]). The following LMI[
Q (x) S(x)
ST(x) R(x)

]
> 0,

where Q (x) = Q T(x), R(x) = RT(x), and S(x) depend affinely on x, is equivalent to

R(x) > 0, Q (x)− S(x)R−1(x)ST(x) > 0.

Lemma 2 ([25]). Given a matrix D, let there be a positive-definite matrix S and there exist a positive scalar η ∈ (0, 1) such that

DTSD− η2S < 0. (6)

Then, the matrix D satisfies the following bound

‖Di‖ ≤ χe−λi with χ =

√
λMax(S)
λMin(S)

and λ = − ln(η).

Lemma 3 ([25]). Consider the system

x(t)+ Dx(t − τ) = f (t), t ≥ 0 (7)

where the matrix D ∈ Rn×n is Schur stable, and

‖f (t)‖ ≤ θe−βt , t ≥ 0, θ > 0, β > 0.

Then, for any initial function ϕ ∈ C([−τ , 0] , Rn), the solution x(t, ϕ) of system (7) satisfies the inequality

‖x(t, ϕ)‖ ≤
[
χ‖ϕ‖h + θ +

χ

τεre
θ
]
e−(1−ε)rt , t ≥ 0, (8)

where r , min{λ/τ, β}, ε ∈ (0, 1), χ and λ are determined by using Lemma 2.
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3. Main results

Theorem 1. Suppose that the condition (H) is satisfied. Then, the delay neural network of neutral-type system (1) is globally
exponentially stable if there exists a time-variant function di(t), i = 1, 2, . . . ,m− 1, which satisfies 0 ≤ dm−1(t) ≤ dm−2(t) ≤
· · · ≤ d1(t) ≤ τ , τ > 0,max

{
|ḋ1(t)|, |ḋ. 2(t)|, . . . , |ḋm−1(t)|

}
≤ u, u ≥ 0, there exist positive constant β > 0 and positive

scalar η ∈ (0, 1), and positive-definite matrix S and symmetrical positive-definite matrices P,Q , Z,Mi, i = 1, 2, 3, . . . ,m,
where m is to be determined, 0 < M1 ≤ M2 ≤ · · · ≤ Mm−1 ≤ Mm, such that

Ω1 =



Ω2 X1 X2 X3 X4 X5 · · · Xm+2
XT1 −2τZ 0 0 0 0 · · · 0
XT2 0 −Z 0 0 0 · · · 0
XT3 0 0 −Z 0 0 · · · 0
XT4 0 0 0 −Z 0 · · · 0
XT5 0 0 0 0 −Z · · · 0
...

...
...

...
...

...
. . .

...

XTm+2 0 0 0 0 0 · · · −Z


< 0,

CTSC − η2S < 0, (9)

where

X1 =

[2τZ
0
0

]
, X2 =

√(1− e−2βτ )Q0
0

 , X3 =

√(1− e−2βτ )M10
0

 , X4 =

√(1− e−2βτ )M20
0

 ,
X5 =

√(1− e−2βτ )M30
0

 , Xm+2 =

√(1− e−2βτ )Mm0
0

 ,
and

Ω2 =



2βP + 2P(−D+ AL)+ 3Mm − Q (Mm−1 −Mm)
MTm−1 −M

T
m (1− u)(Mm−1 −Mm)

MTm−2 −M
T
m−1 0

...
...

MT1 −M
T
2 0

−2βPC + LBTP + (Q T −MT1)e
−2βτ
+ (DT − LAT)PC 0

Mm−2 −Mm−1 · · · M1 −M2
CTP(D− AL)+ PBL− 2βCTP

+(Q −M1)e−2βτ

0 · · · 0 0
(1− u)(Mm−2 −Mm−1) · · · 0 0

...
. . .

...
...

0 · · · (1− u)(M1 −M2) 0

0 · · · 0 2(βCTPC − CTPBL)
−M1e−2βτ − Qe−2βτ


.

Moreover,

‖y(t)‖ ≤
[
χ‖ϕ‖h + θ +

χ

τεre
θ
]
e−(1−ε)rt , t ≥ 0, (10)

where

θ ,
1

√
λMin(P)

[
2λMax(P)+ 2λMax(P)CTC + λMax(MMax)

1− e−2βτ

2β
+ λMax(Q )

1− e−2βτ

2β

+ 2λMax(Z)
2βτ − 1+ e−2βτ

4β2

] 1
2

max{‖φ‖τ , ‖φ∗‖τ },

χ =

√
λMax(S)
λMin(S)

and ω = − ln(η)
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r , min{ω/τ, β}, ε ∈ (0, 1) ,
λMax(MMax) = max{λMax(M1), λMax(M2), λMax(M3), . . . , λMax(Mm)}.

Proof. Let the Lyapunov functional candidate be

V (y(t)) = V1(y(t))+ V2(y(t))+ V3(y(t)),

where

V1(y(t)) = e2βt [y(t)− Cy(t − τ)]TP[y(t)− Cy(t − τ)],

V2(y(t)) =
∫
−d1(t)

−τ

e2β(t+ξ)yT(t + ξ)M1y(t + ξ)dξ +
∫
−d2(t)

−d1(t)
e2β(t+ξ)yT(t + ξ)M2y(t + ξ)dξ

+

∫
−d3(t)

−d2(t)
e2β(t+ξ)yT(t + ξ)M3y(t + ξ)dξ + · · · +

∫
−dm−1(t)

−dm−2(t)
e2β(t+ξ)yT(t + ξ)Mm−1y(t + ξ)dξ

+

∫ 0

−dm−1(t)
e2β(t+ξ)yT(t + ξ)Mmy(t + ξ)dξ +

∫ 0

−τ

e2β(t+ξ)yT(t + ξ)Qy(t + ξ)dξ,

V3(y(t)) =
∫
−d1(t)

−τ

∫ t

t+θ
e2βξ ẏT(ξ)Zẏ(ξ)dξdθ +

∫
−d2(t)

−d1(t)

∫ t

t+θ
e2βξ ẏT(ξ)Zẏ(ξ)dξdθ

×

∫
−d3(t)

−d2(t)

∫ t

t+θ
e2βξ ẏT(ξ)Zẏ(ξ)dξdθ + · · · +

∫
−dm−1(t)

−dm−2(t)

∫ t

t+θ
e2βξ ẏT(ξ)Zẏ(ξ)dξdθ

+

∫ 0

−dm−1(t)

∫ t

t+θ
e2βξ ẏT(ξ)Zẏ(ξ)dξdθ +

∫ 0

−τ

∫ t

t+θ
e2βξ ẏT(ξ)Zẏ(ξ)dξdθ. (11)

The time derivative of the Lyapunov–Krasovskii functional along the trajectories of system (6) is derived as follows:

V̇1(y(t)) = 2βe2βt [y(t)− Cy(t − τ)]TP[y(t)− Cy(t − τ)]
+ 2e2βt [y(t)− Cy(t − τ)]TP[−Dy(t)+ As(t)y(t)+ Bs(t − τ)y(t − τ)]

< 2e2βt [yT(t)(βP − PD+ PAL)y(t)+ yT(t − τ)(−2βPC + PBL+ CTPD− CTPAL)y(t)
+ yT(t − τ)(βCTPC − CTPBL)y(t − τ)], (12)

V̇2(y(t)) < (1− u)e2β(t−d1(t))yT(t − d1(t))(M1 −M2)y(t − d1(t))
+ (1− u)e2β(t−d2(t))yT(t − d2(t))(M2 −M3)y(t − d2(t))
+ · · · + (1− u)e2β(t−dm−1(t))yT(t − dm−1(t))(Mm−1 −Mm)y(t − dm−1(t))
+ e2β(t)yT(t)Mmy(t)− e2β(t−τ)yT(t − τ)M1y(t − τ)
+ e2β(t)yT(t)Qy(t)− e2β(t−τ)yT(t − τ)Qy(t − τ)

< e2βt [(1− u)yT(t − d1(t))(M1 −M2)y(t − d1(t))+ (1− u)yT(t − d2(t))(M2 −M3)y(t − d2(t))
+ · · · + (1− u)yT(t − dm−1(t))(Mm−1 −Mm)y(t − dm−1(t))
+ yT(t)Mmy(t)− e−2βτyT(t − τ)M1y(t − τ)+ yT(t)Qy(t)− e−2βτyT(t − τ)Qy(t − τ)], (13)

V̇3(y(t)) ≤ 2τe2βt ẏ(t)TZẏ(t)−
∫
−d1(t)

−τ

e2β(t+ξ)ẏT(t + ξ)Zẏ(t + ξ)dξ

−

∫
−d2(t)

−d1(t)
e2β(t+ξ)ẏT(t + ξ)Zẏ(t + ξ)dξ −

∫
−d3(t)

−d2(t)
e2β(t+ξ)ẏT(t + ξ)Zẏ(t + ξ)dξ

− · · · −

∫
−dm−1(t)

−dm−2(t)
e2β(t+ξ)ẏT(t + ξ)Zẏ(t + ξ)dξ

−

∫ 0

−dm−1(t)
e2β(t+ξ)ẏT(t + ξ)Zẏ(t + ξ)dξ −

∫ 0

−τ

e2β(t+ξ)ẏT(t + ξ)Zẏ(t + ξ)dξ . (14)

Adding (12)–(14), we obtain

V̇ (y(t)) = V̇1(y(t))+ V̇2(y(t))+ V̇3(y(t))+ 2ηT(t)M1

[
e2β(t−d1(t))y(t − d1(t))− e2β(t−τ)y(t − τ)

−

∫
−d1(t)

−τ

e2β(t+ξ)ẏT(t + ξ)dξ
]
+ 2ηT(t)M2

[
e2β(t−d2(t))y(t − d2(t))

−e2β(t−d1(t))y(t − d1(t))−
∫
−d2(t)

−d1(t)
e2β(t+ξ)ẏT(t + ξ)dξ

]
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+ 2ηT(t)M3

[
e2β(t−d3(t))y(t − d3(t))− e2β(t−d2(t))y(t − d2(t))−

∫
−d3(t)

−d2(t)
e2β(t+ξ)ẏT(t + ξ)dξ

]
+ · · · + 2ηT(t)Mm−1

[
e2β(t−dm−1(t))y(t − d2(t))

− e2β(t−dm−2(t))y(t − d1(t))−
∫
−dm−1(t)

−dm−2(t)
e2β(t+ξ)ẏT(t + ξ)dξ

]

+ 2ηT(t)Mm

[
e2βty(t)− e2β(t−dm−1(t))y(t − dm−1(t))

−

∫ 0

−dm−1(t)
e2β(t+ξ)ẏT(t + ξ)dξ

]
− 2ηT(t)Q

[
e2βty(t)− e2β(t−τ)y(t − τ)−

∫ 0

−τ

e2β(t+ξ)ẏT(t + ξ)dξ
]

< 2τe2βt ẏ(t)TZẏ(t)+ e2βtηT(t)[(e−2βd1(t) − e−2βτ )M1Z−1MT1 + (e
−2βd2(t) − e−2βd1(t))M2Z−1MT2

+ (e−2βd3(t) − e−2βd2(t))M3Z−1MT3 + · · · + (e
−2βdm−1(t) − e−2βdm−2(t))Mm−1Z−1MTm−1

+ (e0 − e−2βdm−1(t))MmZ−1MTm + (e
0
− e−2βτ )QZ−1Q T +Ω2]η(t)

−

∫
−d1(t)

−τ

e2β(t+ξ)[ηT(t)M1 + ẏT(t + ξ)Z]Z−1[ηT(t)M1 + ẏT(t + ξ)Z]Tdξ

−

∫
−d2(t)

−d1(t)
e2β(t+ξ)[ηT(t)M2 + ẏT(t + ξ)Z]Z−1[ηT(t)M2 + ẏT(t + ξ)Z]Tdξ

− · · · −

∫
−dm−1(t)

−dm−2(t)
e2β(t+ξ)[ηT(t)Mm−1 + ẏT(t + ξ)Z]Z−1[ηT(t)Mm−1 + ẏT(t + ξ)Z]Tdξ

−

∫ 0

−dm−1(t)
e2β(t+ξ)[ηT(t)Mm + ẏT(t + ξ)Z]Z−1[ηT(t)Mm + ẏT(t + ξ)Z]Tdξ

−

∫ 0

−τ

e2β(t+ξ)[ηT(t)Q − ẏT(t + ξ)Z]Z−1[ηT(t)Q − ẏT(t + ξ)Z]Tdξ . (15)

Since Z > 0 and 0 ≤ dm−1(t) ≤ dm−2(t) ≤ · · · ≤ d1(t) ≤ τ , the lastm+ 1 parts are less than 0. We can omit them here for
the LMI’s simplicity, although it will bring more conservatism. By Lemma 1, we immediately obtain

V̇ (y(t)) ≤ 2τe2βt ẏ(t)TZẏ(t)+ e2βtηT(t)[(e0 − e−2βτ )M1Z−1MT1
+ (e0 − e−2βτ )M2Z−1MT2 ...+ (e

0
− e−2βτ )Mm−1Z−1MTm−1

+ (e0 − e−2βτ )MmZ−1MTm + (e
0
− e−2βτ )QZ−1Q T +Ω2]η(t)

= e2βtηT1(t)Ω1η1(t), (16)

where

ηT(t) = [yT(t), yT(t − dm−1(t)), yT(t − dm−2(t)), . . . , yT(t − d1(t)), yT(t − τ)]T,
ηT1(t) = [y

T(t), yT(t − dm−1(t)), yT(t − dm−2(t)), . . . , yT(t − d1(t)), yT(t − τ), ẏT(t), 1, 12, . . . , 1m+1]T.

IfΩ1 holds, then V̇ (y(t)) ≤ 0, V (y(t)) ≤ V (y(0)).
However

V (y(0)) = [y(0)− Cy(−τ)]TP[y(0)− Cy(−τ)] +
∫
−d1(0)

−τ

e2βξyT(ξ)M1y(ξ)dξ

+

∫
−d2(0)

−d1(0)
e2βξyT(ξ)M2y(ξ)dξ +

∫
−d3(0)

−d2(0)
e2βξyT(ξ)M3y(ξ)dξ

+ · · · +

∫ 0

−dm−1(0)
e2βξyT(ξ)Mmy(ξ)dξ +

∫ 0

−τ

e2βξyT(ξ)Qy(ξ)dξ

+

∫
−d1(0)

−τ

∫ 0

θ

e2βξ ẏT(ξ)Zẏ(ξ)dξdθ +
∫
−d2(0)

−d1(0)

∫ 0

θ

e2βξ ẏT(ξ)Zẏ(ξ)dξdθ
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+

∫
−d3(0)

−d2(0)

∫ 0

θ

e2βξ ẏT(ξ)Zẏ(ξ)dξdθ + · · · +
∫
−dm−1(0)

−dm−2(0)

∫ 0

θ

e2βξ ẏT(ξ)Zẏ(ξ)dξdθ

+

∫ 0

−dm−1(0)

∫ 0

θ

e2βξ ẏT(ξ)Zẏ(ξ)dξdθ +
∫ 0

−τ

∫ 0

θ

e2βξ ẏT(ξ)Zẏ(ξ)dξdθ.

Since

[y(0)− Cy(−τ)]TP[y(0)− Cy(−τ)] ≤ 2yT(0)Py(0)+ 2yT(−τ)CTPCy(−τ)

we can obtain that

V (y(0)) ≤
[
2λMax(P)+ 2λMax(P)CTC + λMax(MMax)

∫ 0

−τ

e2βξdξ + λMax(Q )
∫ 0

−τ

e2βξdξ
]
‖φ‖2τ

+ 2
[
λMax(Z)

∫ 0

−τ

∫ 0

θ

e2βξdξdθ
]
‖φ∗‖2τ

=

[
2λMax(P)+ 2λMax(P)CTC + λMax(MMax)

1− e−2βτ

2β
+ λMax(Q )

1− e−2βτ

2β

]
‖φ‖2τ

+ 2λMax(Z)
2βτ − 1+ e−2βτ

4β2
‖φ∗‖2τ (17)

and

e2βtλMin(P)‖y(t)− Cy(t − τ)‖2 ≤ V (y(t)), (18)

Then

‖y(t)− Cy(t − τ)‖ ≤
1

√
λMin(P)

[
2λMax(P)+ 2λMax(P)CTC + λMax(MMax)

1− e−2βτ

2β
+ λMax(Q )

1− e−2βτ

2β

+ 2λMax(Z)
2βτ − 1+ e−2βτ

4β2

] 1
2

max{‖φ‖τ , ‖φ∗‖τ }e−βt . (19)

Using Lemma 3, therefore, we immediately obtain

‖y(t)‖ ≤ [χ‖φ‖τ + θ +
χ

τεre
θ ]e−(1−ε)rt , t ≥ 0. (20)

By Lemma 2, we can get

θ =
1

√
λMin(P)

[
2λMax(P)+ 2λMax(P)CTC + λMax(MMax)

1− e−2βτ

2β
+ λMax(Q )

1− e−2βτ

2β

+ 2λMax(Z)
2βτ − 1+ e−2βτ

4β2

] 1
2

max{‖φ‖τ , ‖φ∗‖τ },

and r , min{ω/h, β}, ε ∈ (0, 1) , ω = − ln(η), χ =
√
λMax(S)
λMin(S)

which satisfies CTSC − η2S < 0, η ∈ (0, 1).
Moreover, inequality (20) implies the global exponential stability of system (1). The proof is thus completed. �

Remark 1. According to the results of Vladimir et al. [25], for ε ∈ (0, 1), there is the freedom to choose r smaller at the cost
of slower decay rate, when ε is close to 1, or if ε is close to 0, a larger r and a faster decay rate is obtained.

Remark 2. In order to reduce conservatism, neither the model transformation approach nor any bounded technique on the
cross term is involved. Actually, we can use Ni, i = 1, 2, 3, . . . ,m instead ofMi, i = 1, 2, 3, . . . ,m in (1′)which adds to Eq.
(15), and the Ni, i = 1, 2, 3, . . . ,m are the traditional free matrices. The purpose of using the semi-fee weighting matrices
is to reduce the number of the variational matrices and to simplify the system synthesis and consequently avoid significant
increase in the computational demand which the free matrices will bring.

Remark 3. In Theorem 1, if we set di(t) = τ×(m−i)
m , i = 1, 2, . . . ,m − 1, u = 0, h = τ − d1(t) = d1(t) − d2(t) =

· · · = dm−2(t)− dm−1(t) = dm−1(t) = τ
m , the approach is similar to a simple generalized discretization scheme, then from

Theorem 1 we have the following Theorem 2.
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Theorem 2. Suppose that the condition (H) is satisfied. Then, the delay neural network of neutral-type system (1) is globally
exponentially stable if there exist positive-definite matrix S, positive scalar η ∈ (0, 1), and symmetrical positive-definite matrices
P,Q , Z,Mi, i = 1, 2, 3, . . . ,m, m to be determined, such that

Ω3 =



Ω4 X∗1 X∗2 X∗3
(X∗1 )

T
−2τZ 0 0

(X∗2 )
T 0 e−2βτ − 1 0

(X∗3 )
T 0 0 (e−2βτ − e−2β

τ×(m−1)
m )Z

(X∗4 )
T 0 0 0

...
...

...
...

(X∗m+1)
T 0 0 0

(X∗m+2)
T 0 0 0

X∗4 · · · X∗m+1 X∗m+2
0 · · · 0 0
0 · · · 0 0
0 · · · 0 0

(e−2β
τ×(m−1)
m − e−2β

τ×(m−2)
m )Z · · · 0 0

...
. . .

...
...

0 0 (e−2β
2τ
m − e−2β

τ
m )Z 0

0 0 0 (e−2β
τ
m − 1)Z


< 0

CTSC − η2S < 0,

where

X∗1 =

[2τZ
0
0

]
, X∗2 =

(e0 − e−2βτ )Q0
0

 , X∗3 =

(e−2β τ×(m−1)m − e−2βτ )M1
0
0

 ,
X∗4 =

(e−2β τ×(m−2)m − e−2β
τ×(m−1)
m )M2

0
0

 ,
X∗m+1 =

(e−2β τm − e−2β 2τm )Mm−10
0

 , X∗m+2 =

(1− e−2β τm )Mm0
0

 ,
and

Ω4 =



2βP + 2P(−D+ AL)+ 3Mm − Q e−2β
τ
m (Mm−1 −Mm) e−2β

2τ
m (Mm−2 −Mm−1)

e−2β
τ
m (MTm−1 −M

T
m) e−2β

τ
m (Mm−1 −Mm) 0

e−2β
2τ
m (MTm−2 −M

T
m−1) 0 e−2β

2τ
m (Mm−2 −Mm−1)

e−2β
3τ
m (MTm−3 −M

T
m−2) 0 0

...
...

...

e−2β
τ×(m−1)
m (MT1 −M

T
2) 0 0

−2βPC + (Q T −MT1)e
−2βτ

+(DT − LAT)PC + LBTP
0 0

e−2β
3τ
m (Mm−3 −Mm−2) · · · e−2β

τ×(m−1)
m (M1 −M2)

−2βPC + CTP(D− AL)
+PBL+ (Q −M1)e−2βτ

0 · · · 0 0
0 · · · 0 0

e−2β
3τ
m (Mm−3 −Mm−2) · · · 0 0

...
. . .

...
...

0 · · · e−2β
τ×(m−1)
m (M1 −M2) 0

0 · · · 0 2(βCTPC − CTPBL)
−M1e−2βτ − Qe−2βτ


.
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Moreover,

‖y(t)‖ ≤
[
χ‖φ‖h + θ +

χ

τεre
θ
]
e−(1−ε)rt , t ≥ 0,

where

θ ,
1

√
λMin(P)

[
2λMax(P)+ 2λMax(P)CTC + λMax(MMax)

1− e−2βτ

2β
+ λMax(Q )

1− e−2βτ

2β

+ 2λMax(Z)
2βτ − 1+ e−2βτ

4β2

] 1
2

max{‖φ|τ , ‖φ∗|τ }

χ =

√
λMax(S)
λMin(S)

, ω = − ln(η)

r , min{ω/τ, β}, ε ∈ (0, 1)
λMax(MMax) = max{λMax(M1), λMax(M2), λMax(M3), . . . , λMax(Mm)}.

This proof is similar to that of Theorem 1, and so is omitted here.

Remark 4. Gu’s method, which divides the square region [−τ , 0] × [−τ , 0] into 2N2 triangular regions by a real number
with a piecewise linear kernel, is real discretization. But, ourmethod divides the delay interval [−τ , 0] by invariant function
di(t), i = 1, 2, 3, . . . ,m − 1, in Theorem 1 and τ×(m−i)

m , i = 1, 2, 3, . . . ,m − 1 in Theorem 2. Our semi-free weighting
matrices should satisfy the condition 0 < M1 ≤ M2 ≤ · · · ≤ Mm−1 ≤ Mm in Theorem 1 for V2(y(t)) ≥ 0. More importantly,
Gu’smethod leads tomore computational effort to obtain less conservative results.WhenN is larger, themaximumestimate
delay for stability is larger and the less conservative results are obtained in [3]. However, while the m is larger, the more
corresponding terms

−

∫
−
τ×(m−i)
m

−
τ×(m+1−i)

m

e2β(t+ξ)[ηT(t)Mi + ẏT(t + ξ)Z]Z−1[ηT(t)Mi + ẏT(t + ξ)Z]Tdξ,

in Eq. (15) are omitted which may bring more conservatism. We have to depend on experiments to find the rightm so that
we can get the better results.

4. Illustrative examples

In this section, we illustrate the correctness of our results and also compare them with those in Refs. [10,11,29].

Example 1. Consider the following delayed neural network

ẋ(t) = −Dx(t)+ Af (x(t))+ Bf (x(t − τ))+ Cẋ(t − τ)+ J
x(θ) = ϕ(θ), θ ∈ [−τ , 0],

(21)

where the activation functions with the Lipschitz coefficient matrix L =
[
1 0
0 1

]
and

D =
[
1.5 0
0 1.5

]
, A =

[
α 0.1
0.1 α

]
, B =

[
0.1 0.16
0.05 0.1

]
,

C =
[
0.2 0
0 0.2

]
, J =

[
−4
2

]
, τ = 1.

The problem is to determine the maximum allowable bound of α for guaranteeing the stability of system (21). This
example was considered in [10], where the authors illustrated that themaximum bound of α is 1.198. However, by applying
Theorem 1 to system (21), one can see that our criterion is feasible for any α. The obtained results are significantly better
than that given in [10].
When τ = 1,m = 2, u = 0.5, α = 10 000, the corresponding feasible solution of Theorem 1 is

P = 10−4 ×
[
0.1720 −0.0134
−0.0134 0.1714

]
, Q = 108 ×

[
3.3222 −0.5097
−0.5097 3.3201

]
,

M1 = 107 ×
[
1.2852 −0.1159
−0.1159 3.3201

]
, M2 = 107 ×

[
2.6590 −0.1791
−0.1791 2.6583

]
,

Z = 108 ×
[
5.8382 −0.4582
−0.4582 5.8365

]
, S =

[
56.2494 0
0 56.2494

]
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Fig. 1. The solution trajectory of system (21).

Table 1
Maximum estimate delay for different u

u = 0 u = 0.1 u = 0.2 u = 0.3 u = 0.4 u = 0.5
τ = 91 τ = 89 τ = 90 τ = 90 τ = 89 τ = 90
u = 0.6 u = 0.7 u = 0.8 u = 0.9 u ≥ 1
τ = 89 τ = 89 τ = 89 τ = 91 Infeasible

with η = 0.8660 and the exponentially decay rate r = 0.1438.
By choosing x(θ) = [3, −2]T, system (21) with α = 104, τ = 1 is globally asymptotically stable, as shown in Fig. 1.
For α = 100,m = 2, the upper bounds of the time delay from Theorem 1 are listed in Table 1. The variable u in Table 1

satisfies max
{
|ḋ1(t)|, |ḋ2(t)|, . . . , |ḋm−1(t)|

}
≤ u.

Example 2. Consider the following delayed neural network

ẋ(t) = −Dx(t)+ Af (x(t))+ Bf (x(t − τ))+ Cẋ(t − τ)+ J
x(θ) = ϕ(θ), θ ∈ [−τ , 0]

(22)

where

D =

[2.7644 0 0
0 1.0185 0
0 0 10.2716

]
, A =

[0.2651 −3.1608 −2.0491
3.1859 −0.1573 −2.4687
2.0368 −1.3633 0.5776

]
,

B =

[
−0.7727 −0.8370 3.8019
0.1004 0.6677 −2.4431
−0.6622 1.3109 −1.8407

]
, C =

[ 0.2076 0.0631 0.3915
−0.0780 0.3106 0.1009
−0.2763 0.1416 0.3729

]
,

J =

[
−4
−1
3

]
with the Lipschitz coefficient matrix

L =

[0.1019 0 0
0 0.3419 0
0 0 0.0633

]
.

This example was considered in [11] where the authors illustrated that the maximum bound of delay is τ = 1.3044.
Compared with this the upper bound of delay is τ = 6.5 in [29]. Our result is listed in Table 2.

From Table 2, we can see that the m = 3 in Theorem 2 is the better choice, and we use three semi-free weighting
matrices and other similar matrices P, Z, S. Compared with the free matrices method in [10,29], our method uses fewer
matrix variables and gives the better results. By choosing x(θ) = [5,−2,−1]T, system (22) with τ = 82 is exponentially
stable, as shown in Fig. 2.
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Table 2
Maximum estimate delay for differentm

τ m = 2 m = 3 m = 4 m = 5

Theorem 1 with u = 0.5 τ = 65 τ = 65 τ = 69 τ = 70
Theorem 2 τ = 77 τ = 82 τ = 81 τ = 81

Fig. 2. The solution trajectory of system (22).

5. Conclusions

In this paper, we have investigated the global exponential stability of the DNNs of neutral type by combining several
techniques such as the semi-freeweightingmatrices approach, the Lyapunov–Krasovskii functional, ‘‘Linearization’’ and the
linear matrix inequality. The advantages of this method include the use of fewer variable matrices in the construction of the
Lyapunov functional. At the same time, the semi-free weighting matrices approach is applied to the Lyapunov functional.
Comparing the recent results and illustrated examples shows that the proposed results are less conservative and more
convenient.
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