1,917 research outputs found

    CD-HIT Suite: a web server for clustering and comparing biological sequences

    Get PDF
    Summary: CD-HIT is a widely used program for clustering and comparing large biological sequence datasets. In order to further assist the CD-HIT users, we significantly improved this program with more functions and better accuracy, scalability and flexibility. Most importantly, we developed a new web server, CD-HIT Suite, for clustering a user-uploaded sequence dataset or comparing it to another dataset at different identity levels. Users can now interactively explore the clusters within web browsers. We also provide downloadable clusters for several public databases (NCBI NR, Swissprot and PDB) at different identity levels

    Ferroelectric higher-order topological insulator in two dimensions

    Full text link
    The interplay between ferroelectricity and band topology can give rise to a wide range of both fundamental and applied research. Here, we map out the emergence of nontrivial corner states in two-dimensional ferroelectrics, and remarkably demonstrate that ferroelectricity and corner states are coupled together by crystallographic symmetry to realize the electric control of higher-order topology. Implemented by density functional theory, we identify a series of experimentally synthesized two-dimensional ferroelectrics, such as In2_2Se3_3, BN bilayers, and SnS, as realistic material candidates for the proposed ferroelectric higher-order topological insulators. Our work not only sheds new light on traditional ferroelectric materials but also opens an avenue to bridge the higher-order topology and ferroelectricity that provides a nonvolatile handle to manipulate the topology in next-generation electronic devices

    Dynamic Low-Resolution Distillation for Cost-Efficient End-to-End Text Spotting

    Full text link
    End-to-end text spotting has attached great attention recently due to its benefits on global optimization and high maintainability for real applications. However, the input scale has always been a tough trade-off since recognizing a small text instance usually requires enlarging the whole image, which brings high computational costs. In this paper, to address this problem, we propose a novel cost-efficient Dynamic Low-resolution Distillation (DLD) text spotting framework, which aims to infer images in different small but recognizable resolutions and achieve a better balance between accuracy and efficiency. Concretely, we adopt a resolution selector to dynamically decide the input resolutions for different images, which is constraint by both inference accuracy and computational cost. Another sequential knowledge distillation strategy is conducted on the text recognition branch, making the low-res input obtains comparable performance to a high-res image. The proposed method can be optimized end-to-end and adopted in any current text spotting framework to improve the practicability. Extensive experiments on several text spotting benchmarks show that the proposed method vastly improves the usability of low-res models. The code is available at https://github.com/hikopensource/DAVAR-Lab-OCR/.Comment: Accept by ECCV202

    Characterization of a sensitive biosensor based on an unmodified DNA and gold nanoparticle composite and its application in diquat determination

    Get PDF
    AbstractDNA usually adsorbs gold nanoparticles by virtue of mercapto or amino groups at one end of a DNA molecule. However, in this paper, we report a sensitive biosensor constructed using unmodified DNA molecules with consecutive adenines (CA DNA) and gold nanoparticles (GNPs). The CA DNA–GNP composite was fabricated on gold electrodes and characterized by using of scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and the electrochemical method. Using an electrochemical quartz crystal microbalance (EQCM), the mechanism by which the CA DNA and GNPs combined was also studied. The modified electrode exhibited an ultrasensitive response to diquat. Differential pulse voltammetry (DPV) was used to study the linear relationships between concentrations and reduction peak currents, ranging from 1.0×10−9M to 1.2×10−6M. The detection limit of it is 2.0×10−10M. The feasibility of the proposed assay for use in human urine and grain was investigated, and the satisfactory results were obtained

    SunSat Design Competition 2014-2015 First Place Winner – Team CAST: Multi-Rotary Joints SPS

    Get PDF
    Space Power Satellite (SPS) is a huge spacecraft designed to collect solar energy in space for supplying electric power to the electric grid on the ground. The SPS concept was first proposed by Dr. Peter Glaser in 1968. Various studies on SPS in various countries have been produced over the past forty years. Today, there are multiple variations on this early concept, both in innovation and in optimization. Because of the huge size, immense mass and high power of these SPS installations, there are many technological difficulties. Here, a new Multi-Rotary Joints SPS (MR-SPS) concept is proposed. The large solar array is taken apart to illustrate the many small solar sub-arrays, and to show that each solar sub-array has two middle-power rotary joints. The extreme technical difficulty of high-power rotary joints is simplified by many middle-power rotary joints. The single-point failure problem existing in traditional SPS concept is also solved. At the same time, the modular solar arrays can be more easily assembled in GEO where the power can best be generated and continuously transmitted. Based on our new concept, a whole system full-life NPV analysis method has been developed to evaluate the economics. Our primary results show that the investment is near 30 billion US dollars, with development and transportation costs representing the main portions. When the price of power and the development and construction costs are fixed, the cost of capital becomes an important parameter in influencing the NPV. Click here to see the China Academy of Space Technology\u27s (CAST) video: Multi-Rotary Joints SPS - 2015 SunSat Design Competitio

    Radiative transitions in charmonium from Nf=2N_f=2 twisted mass lattice QCD

    Full text link
    We present a study for charmonium radiative transitions: J/ψηcγJ/\psi\rightarrow\eta_c\gamma, χc0J/Ψγ\chi_{c0}\rightarrow J/\Psi\gamma and hcηcγh_c\rightarrow\eta_c\gamma using Nf=2N_f=2 twisted mass lattice QCD gauge configurations. The single-quark vector form factors for ηc\eta_c and χc0\chi_{c0} are also determined. The simulation is performed at a lattice spacing of a=0.06666a= 0.06666 fm and the lattice size is 323×6432^3\times 64. After extrapolation of lattice data at nonzero Q2Q^2 to 0, we compare our results with previous quenched lattice results and the available experimental values.Comment: typeset with revtex, 15 pages, 11 figures, 4 table

    Liver Transplantation in China

    Get PDF
    Liver transplantation has been developed in Mainland China for about 40 years, from clinical trials to maturity. Its number has become the second in the world, its quality is also in line with the international level, and the source of donors has gradually transitioned to donation after citizen’s death (DCD). This chapter is aimed to elaborate the liver transplant work in China from the history and current status of liver transplantation, the main operating methods, major indications, donor maintenance and donor quality assessment, postoperative major complications, and application of immunosuppressive agents to the postoperative follow-up. Liver transplantation is a meaningful and challenging work currently in China; all the Chinese transplant surgeons and scholars are devoting themselves to this work in order to give more effective help to the patients

    Deletion of Glut1 in early postnatal cartilage reprograms chondrocytes toward enhanced glutamine oxidation

    Get PDF
    Abstract Glucose metabolism is fundamental for the functions of all tissues, including cartilage. Despite the emerging evidence related to glucose metabolism in the regulation of prenatal cartilage development, little is known about the role of glucose metabolism and its biochemical basis in postnatal cartilage growth and homeostasis. We show here that genetic deletion of the glucose transporter Glut1 in postnatal cartilage impairs cell proliferation and matrix production in growth plate (GPs) but paradoxically increases cartilage remnants in the metaphysis, resulting in shortening of long bones. On the other hand, articular cartilage (AC) with Glut1 deficiency presents diminished cellularity and loss of proteoglycans, which ultimately progress to cartilage fibrosis. Moreover, predisposition to Glut1 deficiency severely exacerbates injury-induced osteoarthritis. Regardless of the disparities in glucose metabolism between GP and AC chondrocytes under normal conditions, both types of chondrocytes demonstrate metabolic plasticity to enhance glutamine utilization and oxidation in the absence of glucose availability. However, uncontrolled glutamine flux causes collagen overmodification, thus affecting extracellular matrix remodeling in both cartilage compartments. These results uncover the pivotal and distinct roles of Glut1-mediated glucose metabolism in two of the postnatal cartilage compartments and link some cartilage abnormalities to altered glucose/glutamine metabolism
    corecore