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ARTICLE OPEN

Deletion of Glut1 in early postnatal cartilage reprograms
chondrocytes toward enhanced glutamine oxidation
Cuicui Wang1, Jun Ying1,2,3, Xiangfeng Niu4, Xiaofei Li1, Gary J. Patti4, Jie Shen1 and Regis J. O’Keefe 1

Glucose metabolism is fundamental for the functions of all tissues, including cartilage. Despite the emerging evidence related to
glucose metabolism in the regulation of prenatal cartilage development, little is known about the role of glucose metabolism and
its biochemical basis in postnatal cartilage growth and homeostasis. We show here that genetic deletion of the glucose transporter
Glut1 in postnatal cartilage impairs cell proliferation and matrix production in growth plate (GPs) but paradoxically increases
cartilage remnants in the metaphysis, resulting in shortening of long bones. On the other hand, articular cartilage (AC) with Glut1
deficiency presents diminished cellularity and loss of proteoglycans, which ultimately progress to cartilage fibrosis. Moreover,
predisposition to Glut1 deficiency severely exacerbates injury-induced osteoarthritis. Regardless of the disparities in glucose
metabolism between GP and AC chondrocytes under normal conditions, both types of chondrocytes demonstrate metabolic
plasticity to enhance glutamine utilization and oxidation in the absence of glucose availability. However, uncontrolled glutamine
flux causes collagen overmodification, thus affecting extracellular matrix remodeling in both cartilage compartments. These results
uncover the pivotal and distinct roles of Glut1-mediated glucose metabolism in two of the postnatal cartilage compartments and
link some cartilage abnormalities to altered glucose/glutamine metabolism.
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INTRODUCTION
Although they both originate from the embryonic common
cartilage anlagen, the growth plate (GP) and articular cartilage
(AC) separate and develop unique structures and functions shortly
after birth as the primary and secondary ossification centers form
and expand.1 During early postnatal development, GP chondro-
cytes are metabolically active and undergo a highly orchestrated
sequence of events including cell proliferation followed by
hypertrophic maturation, similar to the chondrocyte differentia-
tion process that occurs during embryonic skeletogenesis.2

Normal functioning of GP chondrocytes determines longitudinal
bone growth, and the cartilaginous extracellular matrix provides a
template for future bone formation.3 Perturbation of the normal
sequence of cartilage development and growth pre- and
postnatally is known to cause a number of skeletal dysplasias in
humans.4 In contrast to the case for GP, following embryonic joint
formation and postnatal growth, the cellularity and phenotype of
mature AC are maintained throughout adulthood via largely
unknown mechanisms.5 AC chondrocytes secrete and maintain a
highly organized extracellular matrix with extraordinary mechan-
ical properties; however, they rarely proliferate and have limited
capacity for cartilage regeneration.6 Disruption or impairment of
the signals that are required to maintain these cells are thought to
cause diseases in AC, such as osteoarthritis (OA).7,8

Although studies have defined unique molecular and signaling
pathways and distinct regulatory networks that govern postnatal
cartilage growth and homeostasis, the intrinsic character and
nature of the chondrocytes in these two cartilage compartments

remain to be fully elucidated. Glucose metabolism has been well
recognized as a key regulatory hub frequently altered in many
pathological conditions;9–12 however, much less is known about
the physiological and pathological roles of glucose metabolism in
cartilage. Chondrocytes, like most other mammalian cells, utilize
glucose as a major energy source but also require glucose as the
structural precursor for glycosaminoglycan synthesis. Early studies
showed that GP and AC chondrocytes both favor glycolysis for
energy production. Moreover, intrinsic metabolic differences are
similarly exhibited by chondrocyte subpopulations within GPs and
AC; with shifts toward more oxidative processes occurring in
hypertrophic and deep-zone cells in GPs and AC, respectively.13,14

Nevertheless, it remains unclear whether the precise extents of
glucose uptake and utilization vary between GP and AC
chondrocytes overall. A prerequisite to answer this fundamental
question is to define the biochemical basis of glucose metabolism
in these cells.
More recently, studies from the Karsenty group15 and the Long

group16 have revealed that Glut1-mediated glucose metabolism
plays an essential role in embryonic cartilage development and
long bone growth. Deletion of Glut1 in osteoprogenitors leads to
reduced bone formation due to limited osteoblast differentiation
and mineralization.15 Mice with Glut1 deficiency in mesenchymal
cells exhibit impaired chondrocyte proliferation and hypertrophic
maturation, leading to retarded skeletal development. Mechan-
istically, the BMP pathway has been shown to regulate GP
chondrocyte Glut1 expression, glucose metabolism, and skeletal
development.16 In addition to BMP2, other signaling pathways

Received: 14 July 2020 Revised: 4 February 2021 Accepted: 28 February 2021

1Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO, USA; 2Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of
Zhejiang Chinese Medical University, Hangzhou, China; 3Zhejiang Chinese Medical University, Hangzhou, China and 4Department of Chemistry, Genetics and Medicine,
Washington University, St. Louis, MO, USA
Correspondence: Jie Shen (shen.j@wustl.edu) or Regis J. O’Keefe (rokeefe@wustl.edu)

www.nature.com/boneresBone Research

© The Author(s) 2021

1
2
3
4
5
6
7
8
9
0
()
;,:



involved in glucose metabolism, such as the IGF pathway, can also
affect cartilage development. Reports have indicated that knock-
out of IGF1R results in a shortened cartilage template with a
hypertrophic zone that is decreased in size.17,18 Similarly,
uncoordinated GP development and imbalanced glucose con-
sumption have also been observed in Igf2-null mice.19 Thus,
evidence indicates that perturbation of glucose metabolism in
chondrocytes during embryonic development via targeting of
either Glut1 or the signaling molecules involved in the regulation
of glucose metabolism profoundly alters the course of chondro-
cyte maturation and limb formation processes, including cell
proliferation and hypertrophy, and cartilage matrix production,
suggesting a key role for glucose metabolism during endochon-
dral ossification and cartilage development. On the other hand,
metabolic changes in AC chondrocytes are also believed to occur
in AC with OA.20–23 Given the molecular complexity of this
emerging regulatory mechanism in cartilage, it is not known
whether glucose metabolism is required for postnatal cartilage
growth and homeostasis and, if so, whether it elicits unifying or
distinct impacts on GP and AC through adulthood.
Here, through genetic and metabolic approaches, we found

that Glut1-mediated glucose metabolism is required for normal
GP and AC homeostasis during postnatal growth. Glut1 LOF led to
decreased cell proliferation and matrix production but para-
doxically increased the amounts of cartilage remnants in the
metaphysis underneath the GP over time. On the other hand,
Glut1 LOF AC displayed transient apoptosis, shifted toward a
more catabolic state, and ultimately developed cartilage fibrosis.
Mice with Glut1 LOF in the AC were less resistant to injury and
developed accelerated OA. To compensate for reduced glucose
uptake and utilization, chondrocytes shifted to glutamine
oxidation as an alternative metabolic pathway. Despite the
necessity for cell survival under conditions of glucose stress,
uncontrolled glutamine flux may cause pathologies in extra-
cellular matrix deposition and remodeling. Collectively, our data
highlight glucose metabolism as a key factor in cartilage
homeostasis and indicate that Glut1 LOF results in cartilage
abnormalities in the AC and GP linked to altered energy
metabolism and glutamine utilization.

RESULTS
Glut1 is the primary isoform of glucose transporters in
chondrocytes, and loss of Glut1 leads to diminished glucose
metabolism
To establish the main glucose transporters used by primary
chondrocytes, we measured the relative gene expression of
different glucose transporters that have been previously reported
in human and murine chondrocytes.24–26 Consistent with previous
findings, among the six genes examined in costal chondrocytes
(referred to as GP chondrocytes hereafter) and AC chondrocytes,
Glut1 was expressed at markedly higher levels than other glucose
transporters, suggesting that Glut1 encodes the glucose transpor-
ter responsible for the majority of activity in both types of
chondrocytes (Fig. 1a, b). Interestingly, comparison of AC tissues of
5- and 22-month-old mice revealed that Glut1 expression greatly
decreased with aging (Fig. 1c). To determine the biological
importance of Glut1 in primary chondrocytes, GP and AC
chondrocytes were isolated from Glut1f/f pups and virally
transduced with Ad-Cre (or Ad-Con) to delete Glut1 (Fig. 1d, e).
None of the other Glut isoform transcripts showed compensatory
increases in response to Glut1 removal in either cell type except
for Glut5, which showed a moderate elevation in expression in
Glut1 LOF AC chondrocytes compared to its basal mRNA
expression in control AC chondrocytes (Fig. 1e). Consequently,
AC chondrocytes showed remarkable reductions in glucose
consumption during a 24 h period (Fig. 1f). Likewise, lactate
secretion was markedly decreased (Fig. 1g), reflecting impaired

glucose uptake and glycolysis in Glut1 LOF AC chondrocytes. More
strikingly, in the case of GP chondrocytes, removal of Glut1 led to
nearly undetectable glucose consumption or lactate secretion
(Fig. 1h, i), hence indicating complete blockade of glucose
metabolism in these cells.

Glut1 is required for postnatal GP growth
These observations prompted us to investigate whether Glut1-
mediated glucose metabolism is required for postnatal GP
growth and AC homeostasis. To answer this question, we first
examined the cell linages that are targeted by Agc1CreERT2 by
analyzing the cartilage compartments of Agc1CreERT2;Ai9f/+ mice
following tamoxifen induction at 1 month of age. Histological
analyses revealed that Ai9 expression could be efficiently
activated and that high abundance of Ai9 was maintained in
both the AC and GP 1 month after tamoxifen delivery,
suggesting sufficient Cre-mediated recombination (Supplemen-
tary Fig. 1). To specifically target Glut1 loss-of-function (LOF) in
chondrocytes, we next generated Agc1CreERT2;Glut1f/f (Glut1Agc1ER;
Glut1 LOF) mice. Conditional deletion of Glut1 started at 1 month
of age, when longitudinal bone growth continues to occur as GP
chondrocytes proliferate and progress through a hypertrophic
process. In contrast, AC is fully developed and stable at this age.
Successful removal of Glut1 was histologically verified in both
cartilage compartments in Glut1 LOF mice (Fig. 2a, b).
By 4 months, the Glut1 LOF mice exhibited shortening of long

bones with no other overt abnormalities (Fig. 3a). Histological
characterization of the mutant hind limbs demonstrated a
shortened and disorganized GP with an overall decrease in
Col2a1 in mutant GPs (Fig. 3c and Supplementary Fig. 2a).
Notably, we observed increased amounts of cartilage remnants
within bony trabeculae in the metaphysis, as indicated by
increased amounts of Col2a1-positive and proteoglycan-rich
matrix underneath the GP (Fig. 3b). In severe cases, a second
horizontal cartilage plate distal to the original GP was observed
crossing over the diaphysis in the mutants (data not shown). The
cartilage remnants persisted through adulthood with no further
resorption through the last time point at 14 months (Fig. 3b and
Supplementary Fig. 3). Unexpectedly, increased levels of Mmp13,
a marker of chondrocyte terminal hypertrophy, were observed in
Glut1 LOF GPs (Fig. 3c), suggesting that the incomplete
resorption of the cartilage matrix was not due to delayed
differentiation. In addition, comparable osteoclast activity was
observed in Glut1 LOF mice, as reflected by Oc.S/BS and N.Oc/BS
values in the metaphysis region that were similar to those of
the control mice (Supplementary Fig. 4), indicating that the
persistent cartilage remnants in Glut1 LOF mice were not due to
reduced osteoclast resorption but rather were likely secondary to
a qualitative change in matrix properties. We also performed
micro-CT scans to examine the trabecular bone quality in the
metaphysis region and found no significant difference in BV/TV
between Glut1 LOF mice and their littermate controls at 4 months
and 7 months of age (Supplementary Fig. 5), indicating that the
cartilage remnants induced by loss of Glut1 in chondrocytes do
not alter bone quality.
To confirm these in vivo findings, we isolated primary GP

chondrocytes and performed longitudinal differentiation assays
following elimination of Glut1. Glut1 LOF cells expressed
significantly lower levels of the cartilage matrix genes Acan
and Col2a1 than the control cells, consistent with the decreased
matrix synthesis seen in Glut1 LOF GPs (Fig. 3d–f). Consistent
with the elevated Mmp13 staining in Glut1 LOF GPs, Mmp13
expression was markedly enhanced in Glut1 LOF cells as they
progressed through an in vitro maturation process (Fig. 3g),
reinforcing the notion that the increased amounts of cartilage
remnants in the mutant metaphyseal bone were not simply
caused by delayed hypertrophy or lack of MMP13 expression. In
fact, Col10a1 was normally expressed in the hypertrophic zone
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of Glut1 LOF GPs and showed no obvious difference relative to
the control animals (Supplementary Fig. 2b). These findings
together suggest that Glut1 and glucose metabolism are critical
for GP elongation and cartilage matrix synthesis and turnover/
remodeling.

Glut1 is indispensable for the maintenance of AC homeostasis
AC also displayed abnormalities upon loss of Glut1 postnatally.
Histological analyses revealed significantly diminished cellularity
in Glut1 LOF AC at 4 months (Fig. 4a), particularly in the tibia
plateau, that was accompanied by reductions in proteoglycans, as
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Fig. 1 Glut1 encodes the primary glucose transporter in primary chondrocytes, and deletion of Glut1 leads to diminished glucose metabolism
in chondrocytes. N= 3. a–b Gene expression of different glucose transporters in normal primary costal (GP) chondrocytes (a) and articular (AC)
chondrocytes (b) as assayed by RT-qPCR. All mRNA abundances were normalized to that of β-actin. N= 3. *P < 0.05. c Immunostaining for
Glut1 in knee sections of C57/BJ6 wild-type mice at 5 and 22 months. N= 3. Scale bar, 100 μm. d–e Gene expression of different glucose
transporters in Ad-Con (control; Con)- or Ad-Cre (KO)-transduced Glut1f/f primary GPs (d) and AC chondrocytes (e). The abundance of each
individual mRNA in Glut1 KO cells was normalized to that in control cells. N= 3. *P < 0.05. f–i Glucose consumption and lactate secretion by
control and Glut1 KO primary GP (f–g) and AC (h–i) chondrocytes over 24 h. The data were normalized to the genomic DNA content and are
expressed as the mean ± SD. N= 5. *P < 0.05
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indicated by decreased Safranin O staining (Fig. 4b). In addition,
Glut1 ablation in primary AC chondrocytes resulted in a significant
decrease in the expression of the anabolic genes Acan and Col2a1
and a marked increase in the expression of the catabolic markers
Adamts5 and Mmp13 (Fig. 4c). Mmp13 protein expression, which is
typically minimal in normal AC, was substantially increased in
Glut1 LOF AC (Fig. 4d, left panels). Interestingly, cartilage fibrosis
developed by 7 months (Fig. 4a), as evidenced by areas of Col3a1
expression that were associated with complete loss of proteogly-
cans in the same region (Fig. 4d, middle). We next examined
whether Col3a1, a pathological fibrosis marker, is expressed in
human OA cartilage (Fig. 4d, right). In contrast to the normal
cartilage obtained from patients with amputation, which lacked

Col3a1, osteoarthritic cartilage from OA patients expressed a
substantial amount of Col3a1 throughout the entire tissue.
We next sought to determine how Glut1 LOF can modify

disease progression in an experimental OA setting. OA was
introduced by MLI surgery at 3 months in control and Glut1 LOF
mice in which Glut1 was targeted for deletion at 1 month of age.
As expected, control animals showed no overt lesions in their AC
at 4 weeks following MLI. In contrast, severe cartilage damage was
observed in Glut1 LOF AC, including severe surface fibrillations
and fissures, massive loss of cartilage and diminished proteogly-
can staining (Fig. 4e). Moreover, Col3a1 expression was detected
at this time in Glut1 LOF mice but was nearly undetectable in
controls (Fig. 4e, right). More importantly, the increased severity of

Glut1f/f Agc1CreERT2; Glut1f/f

Glut1f/f Agc1CreERT2; Glut1f/f

Glut1 lHC

a

b

Fig. 2 Postnatal genetic deletion with Agc1CreERT2 eliminates Glut1 in both the growth plate (GP) and articular cartilage (AC) in mouse long
bones. a–b Immunostaining for Glut1 AC in knee sections (a) and GP tibia sections (b) of Glut1f/f (control; Con) and Agc1CreERT2;Glut1f/f (Glut1
LOF; Mut) mice 1 month following tamoxifen induction. N= 3. Scale bar, 100 μm
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analyses of Glut1, Col2a1, Acan, and Mmp13 in control and Glut1 KO primary GP chondrocytes at the indicated time points over the course of
hypertrophic differentiation. All mRNA abundances were normalized to the abundance of β-actin and then normalized to the abundances in
the controls at day 0. N= 3. *P < 0.05 relative to the controls
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OA and the exacerbation of cartilage deterioration were
confirmed with the OARSI scoring system (Fig. 4f). Collectively,
these data indicate that Glut1 and glucose metabolism are
required for the maintenance of AC homeostasis and that AC with
Glut1 LOF is less resistant to injury and more susceptible to the
development of OA than normal AC.

Glut1-mediated glucose metabolism is necessary for GP
chondrocyte proliferation and AC chondrocyte survival
We next investigated whether any cellular defects could be
responsible for the shortened GP and decreased cellularity in AC
seen in Glut LOF mice. Cell proliferation, measured by EdU
incorporation 1 week following tamoxifen induction, was robust
in the control GPs, especially in the columnar region, as indicated
by quantification of EdU labeling. In contrast, Glut1 deletion caused
a remarkable reduction in cell proliferation to a nearly undetectable
level (Fig. 5a upper panel, b). Unlike in GP chondrocytes, EdU
incorporation was barely visible in either group of AC chondrocytes,
likely due to the lack of involvement of AC chondrocytes in limb
growth (Fig. 5a lower panel, b). In contrast, GP TUNEL staining
demonstrated no apparent apoptosis in either the control or Glut1
LOF GPs at 2 months (Fig. 5c upper panel, d). However, AC with
Glut1 deletion had extensive apoptosis, while the control AC
showed virtually no apoptosis (Fig. 5c, lower, d). Notably, this early
apoptosis was transient and no longer detected at later stages (data
not shown). Thus, Glut1 is critical for the normal proliferation of GP
chondrocytes but dispensable for their survival; however, Glut1 is
necessary for the viability of AC chondrocytes in fully mature AC.
Indeed, Glut1 LOF mice exhibited shortened and disorganized GPs
and decreased cellularity in the AC at later times (Figs. 3b, 4a, 5e).

Glutamine oxidation is enhanced as an alternative metabolic
pathway in Glut1 LOF chondrocytes
As glycolysis is the most important energy-producing pathway in
chondrocytes, we anticipated that metabolic alterations due to
reduced glucose uptake would occur in association with
phenotypic changes in Glut1 LOF mice. Interestingly, Seahorse
analysis of the mitochondrial oxygen consumption rate (OCR)
demonstrated an increase in the OCR in Glut1 LOF GP and AC
chondrocytes compared to controls with normal Glut1 expression
(Fig. 6a). Notably, GP chondrocytes have a much higher rate of
oxidative phosphorylation than AC chondrocytes. Glut1-deficient
AC chondrocytes had relatively greater increases in oxygen
consumption than GP chondrocytes, in part due to their lower
basal levels of oxidative phosphorylation (Fig. 6a). As expected,
the extracellular acidification rate (ECAR), an indicator of glycolysis,
was substantially reduced in both types of Glut1 LOF chondro-
cytes (Supplementary Fig. 6a). The elevated mitochondrial
respiration in Glut1 LOF cells led to slightly increased ATP
production with no alteration of basal reactive oxygen species
(ROS) generation (Supplementary Fig. 6b, c), implicating induction
of alternative metabolic pathways such as glutamine metabolism.
Glutaminolysis fuels the TCA cycle by catabolizing glutamine to α-
ketoglutarate (α-KG). Indeed, glutamine consumption during the
24 h period was significantly increased in both GP and AC Glut1
LOF chondrocytes (Fig. 6b). It is important to note that in the
absence of Glut1, AC chondrocytes exhibited a much greater
increase (>2-fold) in glutamine utilization than GP chondrocytes
(Fig. 6b), possibly because the baseline glutamine consumption
was already at a much higher level in control GP chondrocytes.
These differences in glutamine utilization partially explain the
discrepancy in basal OCR between the two types of chondrocytes.
Consistent with the enhanced glutamine flux, the levels of
glutaminase (Gls), the primary enzyme initiating glutamine
catabolism, were markedly increased in Glut1 LOF chondrocytes
of both GPs and AC in vitro (Fig. 6c) and in vivo (Fig. 6d). Since
Glut1-mediated glucose metabolism has been shown to positively
regulate protein synthesis in osteoblasts,15 we performed western

blotting to determine whether the expression of phosphorylated
s6 kinase, a key enzyme involved in protein synthesis, was altered
in Glut1 LOF chondrocytes. Unlike in osteoblasts, Glut1 deficiency
did not alter phosphorylated s6 kinase expression in either GP or
AC chondrocytes (Fig. 6c).
Thus, these findings suggested that glucose deprivation in

chondrocytes results in enhanced glutaminolysis, which serves as
an alternative metabolic pathway and compensates for deficits in
energy and biosynthetic precursors to maintain cell survival and
tissue homeostasis. To verify this finding, we used uniformly
13C-labeled glutamine to trace the downstream metabolic fluxes.
Briefly, following adenoviral infection and recovery, Glut1f/f GP
and AC chondrocytes were incubated with U-13C glutamine for
24 h, and the contribution of the tracer to downstream
metabolites was determined by measuring the isotopolog pattern
(Fig. 6e). As expected, U-13C glutamine was incorporated into
the TCA cycle, and the citrate m+ 4 isotopolog (Fig. 6f), as well as
the aspartate m+ 4 isotopolog, as part of the malate-aspartate
shuttle (Fig. 6g), were enriched in both GP and AC Glut1 LOF
chondrocytes. Glutamine-derived α-KG (α-ketoglutarate) can
be utilized to generate citrate in the TCA cycle. Although the
oxidation pathway is preferred in many cancer cells, glutamine
can also be converted to citrate via reductive carboxylation
during conditions of hypoxia or mitochondrial dysfunction.27,28

We then further evaluated glutamine utilization by comparing the
citrate m+ 4 isotopolog and m+ 5 isotopolog. First, glutamine
was more readily metabolized to citrate in GP chondrocytes, as
reflected by the higher enrichment of citrate m+ 4 and m+ 5
isotopolog (35.6% altogether) compared to that in AC chondro-
cytes (9.1% in total) (Fig. 6f). Second, relative to reductive
carboxylation (citrate m+ 5 isotopolog), glutamine incorporation
into citrate occurred primarily through oxidation in the TCA cycle
(citrate m+ 4 isotopolog) in normal GP chondrocytes, while there
was no evidence of reductive carboxylation of glutamine in either
control or Glut1 LOF AC chondrocytes (Fig. 6f). However, in Glut1
GP LOF cells, reductive carboxylation of glutamine metabolism
was suppressed, whereas oxidation was increased (Fig. 6f),
indicating that energy production was prioritized under circum-
stances of glucose limitation.
Conversely, the contribution of glutamine to synthesis of other

amino acids, such as proline, was markedly reduced in chon-
drocytes. Therefore, there was enhanced glutamine flux due to
glucose deficiency, but it was reprogrammed toward increased
glutamine oxidation, an energy-producing pathway, rather than
amino acid biosynthesis, as exemplified by the reduced produc-
tion of proline from glutamine.

Enhanced glutamine-dependent α-KG production results in
altered collagen processing in Glut1 LOF cartilage
Previous studies have shown that enhanced glutamine metabo-
lism to α-KG in chondrocytes increases collagen hydroxylation in
the cartilage matrix, leading to abundant cartilage remnants in
bony trabeculae.29 To investigate whether the presence of
cartilage remnants in the metaphyseal bones of Glut1 LOF mice
could be similarly a result of metabolically induced collagen
modification, we first assessed genes associated with collagen-
modifying enzymes. Our results showed that collagen prolyl-4-
hydroxylases (P4hs), including both isoforms previously identified
in chondrocytes, P4ha1 and P4ha2,30 were upregulated in both
Glut1 LOF GP and AC chondrocytes (Fig. 7a, b). Notably, the main
enzyme isoform, P4ha2, showed the greatest induction. Proline
hydroxylation is known to increase the stability of collagen triple
helices.31 Given the increased enzyme levels and availability of the
metabolic cosubstrate α-KG, we anticipated alterations in collagen
processing. Indeed, the hydroxyproline content in cartilage
collagen was increased in both Glut1 LOF GP and AC explants
(Fig. 7c, d). Such collagen modifications increase the resistance of
the cartilage matrix to protease-mediated breakdown.32 Thus, it is
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plausible that the MMP13 levels in Glut1 LOF cartilage are
increased in an attempt to degrade the modified cartilage matrix
(Figs. 3c, 4d). Finally, to validate the importance of P4h for
cartilage remnants in Glut1 LOF mice, 1-month-old control and
Glut1 LOF mice were treated with DHB every other day for
2 months. DHB is a selective P4h inhibitor33 and has been safely

used in mice to inhibit P4h-mediated collagen processing and
deposition.34 Histological examination revealed that in vivo
blockade of P4h with DHB remarkably normalized the increased
amount of cartilage remnants seen in the metaphyseal region in
Glut1 LOF mice (Fig. 7e). In contrast, this P4h inhibitor had no
effect on the shortening of GPs or on the decreased cellularity in
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AC (Fig. 7e, f). Thus, our results show that in addition to enhanced
glutamine-derived oxidative phosphorylation, Glut1 LOF chondro-
cytes also have increased prolyl hydroxylase activity. Since
collagen P4h is an α-KG-dependent enzyme that catalyzes proline

hydroxylation to promote the formation of collagen triple helices,
glutamine-derived α-KG is likely a key metabolite responsible for
the increased oxidative phosphorylation and collagen over-
modification in Glut1 LOF mice.
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DISCUSSION
The present work provides genetic and metabolic evidence that
Glut1-mediated glucose metabolism is critical for postnatal GP
growth and maintenance of AC homeostasis. Deletion of Glut1 in
chondrocytes during early postnatal development disrupts GP
function and results in reduced longitudinal bone growth by
interfering with chondrocyte proliferation and matrix synthesis
and processing. Inhibiting Glut1 in AC, on the other hand, results
in diminished cellularity and in imbalanced tissue anabolism and
catabolism, with ultimate progression to cartilage fibrosis. More-
over, Glut1 LOF AC has increased susceptibility to injury-induced
OA. Despite the disparate cellular phenotypes caused by Glut1

LOF, our study provides the first evidence of metabolic plasticity
exhibited by both GP and AC chondrocytes that allows these cells
to switch to glutamine oxidation to support energy production
when glucose metabolism is compromised. Collectively, our work
highlights the pivotal and distinct roles of Glut1-mediated glucose
metabolism in rapidly proliferative GP chondrocytes and metabo-
lically inactive AC chondrocytes.
Recent studies have uncovered the pivotal role of Glut1 in

embryonic cartilage development. In one study, ablation of Glut1
in osteoprogenitor cells led to a disorganized and prolonged zone
of hypertrophic chondrocytes until E18.4, leading to impaired
bone mineralization and formation via suppression of Runx2
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expression.15 Similarly, in another study, genetic deletion of Glut1
in mesenchymal cells led to impairment of limb development,
primarily due to decreased chondrocyte proliferation and
hypertrophy since cell survival was largely unaffected by loss of
Glut1.16 The findings of our present postnatal studies are
consistent with recent findings in embryos. Postnatal GP
chondrocytes, particularly those residing in the flat columnar
zone, are highly proliferative and primarily utilize glucose through
glycolytic processes to not only accelerate the output of ATP but
also allow diversion of glycolytic intermediates for biomass
synthesis in support of rapid cellular proliferation.35 Despite its
inefficient ATP production, glycolysis is the most important
energy-producing pathway in GP chondrocytes.29 Thus, to survive
glucose deprivation, GP chondrocytes decrease activities that
require a steady supply of both energy and metabolites for use as
building blocks;36 these adaptations are observed in Glut1-
deficient GP chondrocytes. First, proliferation is dramatically
arrested in the columnar zone in Glut1 LOF GPs. Second, glucose
limitation affects matrix production, as reflected by decreased
deposition of collagen and proteoglycans in Glut1 LOF GPs as well
as reduced expression of cartilage matrix genes in vitro. These
acquired adaptations by GP chondrocytes at least partly
circumvent cell death in the absence of glucose uptake. Future
studies are warranted to understand the biochemical basis for
glucose metabolism to control the proliferation and biosynthetic
activity of GP chondrocytes. In contrast to the decreased
chondrocyte hypertrophy shown in embryonic GP chondrocytes
with Glut1 LOF,16 the same process was largely unaffected by
Glut1 LOF in the early postnatal GP, suggesting that there are
differential requirements of glucose metabolism in embryonic and
postnatal chondrocyte hypertrophy. In addition, our findings
could have clinical implications. The predilection of proliferating
GP chondrocytes for glucose described here provides a plausible
explanation for the poor longitudinal growth experienced by
some children and adolescents who are fed a chronically low-
carbohydrate diet.37 In this regard, our findings argue that the
main factors regulating the lengthening of the postnatal skeleton
by GPs are chondrocyte proliferation and appropriate matrix
remodeling/turnover but not chondrocyte hypertrophy, as pre-
viously suggested.38,39

Unlike GPs, where chondrocytes undergo a progressive
maturation process called chondrogenesis followed by endochon-
dral ossification, AC exhibits a unique feature: AC chondrocytes
maintain a consistent phenotype over time. While extensively
studied, the manner in which transient (GP) and permanent (AC)
chondrocytes differ and how they acquire and develop divergent
developmental and functional paths during postnatal life remain
unclear.40 Cellular energy metabolism is increasingly being
recognized as an important driver of cellular phenotype. Here,
we uncovered important disparities in glucose metabolism
between GP and AC chondrocytes. The high demand for glucose
uptake by AC chondrocytes explicitly explains the requirement of
glucose for cell survival and the increased apoptosis observed in
Glut1 LOF AC. In contrast, glucose metabolism is dispensable for
GP chondrocyte survival. Second, although both types of
chondrocytes favor glycolysis for generating energy and biomass
under normal conditions,22,29,41 AC chondrocytes utilized mito-
chondrial respiration much less than GP chondrocytes, as
indicated by their smaller basal OCR (46.84 ± 0.89 vs 123.22 ±
0.89 pmol·min−1 per 5 × 104 cells). Furthermore, comparison of the
ECAR/OCR ratio, an indicator of glycolysis dependence relative to
oxidative phosphorylation, indicated that AC chondrocytes (0.67 ±
0.02) seemed to be more dependent on glycolysis than GP
chondrocytes (0.38 ± 0.02) regardless of aerobic conditions. The
higher rates of glycolysis present in AC chondrocytes may be
necessary to provide the substrates required for the anabolic
activities occurring in AC chondrocytes, since the glycosamino-
glycan side chains of the AC proteoglycan-rich matrix are actively

synthesized and degraded at a higher rate than the turnover of
the protein cores, which are metabolized at a much lower rate.42

OA cartilage is characterized by decreased expression of several
glycolytic enzymes and an increase in mitochondrial respiration
under basal conditions.43,44 Recently, metabolic reprogramming in
AC chondrocytes has been linked to cell hypertrophy and
associated catabolic mechanisms, most notably those related to
phenotypes acquired by OA cartilage.22 This finding is supported
by our results indicating that loss of Glut1 in AC chondrocytes
causes increased mitochondrial respiration, ultimately leading to
an imbalance toward catabolic pathways in AC, as highlighted by
enhanced Mmp13 expression and significant loss of proteoglycan
content in some regions. Future studies will be necessary to
elucidate the precise mechanisms by which metabolic reprogram-
ming contributes to the pathogenesis of OA. Moreover, it is
important to note that Glut1 LOF AC is able to overcome transient
cell death and maintain cell survival by upregulating mitochon-
drial respiration under glucose stress, suggesting that AC
chondrocytes exhibit metabolic flexibility similar to that of GP
chondrocytes; however, this metabolic switch is unable to
compensate for the loss of glucose metabolism in AC under
extreme instances, such as injury.
Here, we provide evidence that primary chondrocytes from GPs

and AC display metabolic plasticity under stress conditions due to
reduced glucose uptake as a result of Glut1 LOF. Metabolic
plasticity is presumably important for chondrocytes to be able to
best utilize available nutrients under unfavorable conditions, thus
meeting diverse cellular demands associated with proliferation,
differentiation, and matrix synthesis and secretion. For most
mammalian cells, the metabolic pathways required for cell survival
and growth are predominantly fueled by two of the most
abundant nutrients, glucose and glutamine.45 Here, we demon-
strate that in the absence of glucose availability, both GP and AC
chondrocytes increase mitochondrial respiration and maintain
energy production by utilizing glutamine-derived α-KG as an
alternative mitochondrial substrate. Studies have indicated that
under circumstances of nutrient limitation or impaired supply of
glucose-derived pyruvate to the mitochondria, maintenance of
pools of TCA intermediates via glutamine oxidation is essential for
the survival of some rapidly proliferating cells.46,47 This is consistent
with our observations from GP chondrocytes showing that cell
viability was maintained via promotion of glutamine oxidation with
concomitant suppression of glutamine reductive carboxylation. We
and others have demonstrated that there are remarkable
reductions in cell proliferation and protein synthesis when glucose
metabolism is limiting.15,16 Thus, engaging in glutamine oxidation
enables GP chondrocytes to survive in glucose-limited conditions;
however, normal proliferation and matrix production by these cells
is impaired, which likely results in a need for glucose oxidation.
With regard to AC chondrocytes, it is not surprising that Glut1

LOF in AC chondrocytes results in apoptosis despite a shift to
glutamine oxidation, unlike in Glut1-deficient GP chondrocytes,
which do not have an increase in apoptosis. There are two
possible explanations. First, AC chondrocytes are highly depen-
dent on glucose metabolism and less versatile in metabolizing
other nutrients, as exemplified by the lower glutamine consump-
tion and fully labeled citrate levels in AC chondrocytes than in GP
chondrocytes. Second, increased mitochondrial metabolism pro-
duces excess ROS, which are known to be detrimental to articular
chondrocytes.48 Although no alterations in ROS generation were
observed in Glut1 LOF AC chondrocytes, it is still possible that the
normoxic culture conditions used in the current study artificially
induced excess ROS production in AC chondrocytes compared to
that in hypoxic conditions since AC is a naturally avascular tissue
with low oxygen tension ranging from 2% to 7%.49 Therefore,
future studies are needed to determine the regulatory mechan-
isms by which intrinsic glucose metabolism regulates the
proliferation of GPs and the survival of AC chondrocytes.
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Finally, we found that enhanced glutamine oxidation at least
partially maintained the cell survival of GP chondrocytes;
however, it caused unfavorable collagen modifications and
consequently led to persistent cartilage remnants in the bony
trabeculae. P4h is an α-KG-dependent dioxygenase that catalyzes
the 4-hydroxylation of proline to promote the formation of the
collagen triple helix.50 Both isoforms of the catalytic subunit P4ha
were significantly upregulated in both types of Glut1 LOF
chondrocytes. As expected, the increased enzyme levels and
availability of the metabolic cosubstrate α-KG resulted in an
increase in proline hydroxylation content in ex vivo-cultured
Glut1 LOF cartilage. Previous studies have demonstrated that
P4h-mediated collagen content alteration, specifically increased
hydroxylation of proline, enhances the stability of the mature
collagen triple helices deposited by chondrocytes and makes the
cartilaginous matrix more resistant to protease- and osteoclast-
mediated degradation and resorption in mice.29,31 Therefore,
as expected, targeting P4h in vivo reversed the increases in
cartilage remnants in the metaphyses of Glut1 LOF mice, restoring
the amounts to the levels in control mice. Notably, P4h blockade
showed no obvious protective effect against proteoglycan loss in
AC or against the reduced cellularity that occurs in Glut1 LOF AC
chondrocytes. Although collagen overmodification also occurred
in Glut1 LOF AC, the manner in which this contributed to joint
degeneration and may have been corrected by DHB treatment
was not determined in our experiments since we only evaluated
DHB-treated mice at 3 months of age.
In summary, our findings have important translational implica-

tions, as some cartilage abnormalities, such as excessive ECM
remodeling and fibrosis, could be potentially associated with
changes in glucose/glutamine metabolism.

MATERIALS AND METHODS
Mice
All animal studies were performed in accordance with approval of the
Committees on Animal Resources in Washington University in St
Louis. Glut1f/f mice were generated as previously described.51 Ai9 Cre
reporter mice were purchased from the Jackson Laboratory.52

Agc1CreERT2 mice53 were generous gifts from Dr. Benoit de
Crombrugghe (Department of Genetics, University of Texas MD
Anderson Cancer Center, Houston, TX). Agc1CreERT2;Glut1f/f (Glut1Agc1ER;
Glut1 LOF) mice, Agc1CreERT2;Rosa-Ai9f/+ (Rosa-Ai9Agc1ER) mice and Cre-
negative littermates (Glut1f/f and Rosa-Ai9f/+) were viable and
produced Mendelian ratios. Tamoxifen was administered daily at
a dose of 1 mg per 10 g body weight for 5 consecutive days via
intraperitoneal injection to 1-month-old Glut1Agc1ER mice Rosa-
Ai9Agc1ER mice, and Cre-negative controls to remove Glut1 alleles
or induce Ai9 expression. To determine whether Glut1 LOF
modifies the disease progression of injury-induced OA, meniscal
ligament injuries (MLIs) were created unilaterally in the knee joints
as previously described54 in Glut1Agc1ER mice and their littermates
following tamoxifen induction at 1 month. Ethyl-3,4-dihydrox-
ybenzoic acid (DHB; Sigma-Aldrich; #E24859) was administered
intraperitoneally to 1-month-old control and Glut1 LOF mice every
other day at a dose of 40 mg·kg−1 body weight for 2 months.

Histological analyses
Mouse knees were collected at the indicated time points and fixed
in 10% neutral buffered formalin for 3 d. These specimens were
decalcified for 3 d in a formic acid decalcifier (ImmunoCal; StatLab,
#1414-1), processed and embedded in paraffin, and sectioned at a
thickness of 5 μm. The sections were stained with Safranin O/Fast
Green to analyze phenotypic changes within the knee joint and
GP. Following staining, the sections were scanned using a
NanoZoomer 2.0-HT whole-slide imager (Hamamatsu), and
cellularity above the tidemark in the cartilage of the tibial plateau
was subsequently measured using NDP.View 2 software with the

scanned images. Three sections for each specimen were
examined for all quantitative histomorphometric analyses. Histo-
logical scoring of OA-like changes on the medial femoral condyle
and tibial plateau was performed for Glut1Agc1ER and control mice
4 weeks following MLI using the established Osteoarthritis
Research Society International (OARSI) scoring system (score,
0–6).55 Immunohistochemical staining for Glut1 (1:200; Abcam;
#ab28484), Col2A1 (1:100; Thermo Fisher Scientific; #MS235-P),
Col10A1 (1:100; Quartet; #1-CO097-05), Mmp13 (1:200; Abcam;
#ab39012), and Col3A1 (1:1 000; Abcam; #ab7778) was performed
on paraffin sections following appropriate antigen retrieval
methodologies. The signal was developed with DAB reagents
(Vector Laboratories; #SK-4100), and the sections were counter-
stained with hematoxylin or methyl green. Immunofluorescence
(IF) staining for glutaminase (Gls; 1:200, Abcam; #ab2110382) was
conducted on paraffin sections following appropriate antigen
retrieval, and the sections were counterstained with DAPI. The
percentage of Col2A1-positive area was quantified by calculating
the Col2A1-positive area over the total GP area. To evaluate
osteoclast activity in the metaphysis region, TRAP staining was
performed on paraffin sections. Oc.S/BS and N.Oc/BS were
analyzed based on TRAP staining with a BioQuant histomorpho-
metry system. To assess proliferation, EdU (10 μg·g−1 body
weight) was injected daily into 1-month-old Glut1Agc1ER and
control mice for 3 d. Frozen sections were subjected to Click-iT
EdU staining according to the manufacturer’s instructions
(Invitrogen; #C10337). To assess apoptosis, TUNEL staining was
performed on paraffin sections with an In Situ Cell Death
Detection Kit, Fluorescein (Roche; #11684795910), according to
the manufacturer’s instructions.

Micro-CT scanning and analysis
Mouse knee joints harvested from 4- and 7-month-old mice were
scanned by a Scanco VivaCT 40 scanner with an X-ray energy of 55
kVp, a current of 145 μA, an integration time of 300 ms and a voxel
size of 10 μm. The bone volume fraction (BV/TV) of the bony
trabeculae in the tibial metaphysis was calculated by Scanco
analysis software as described previously.56

Primary chondrocyte cultures
Murine costal chondrocytes and murine articular chondrocytes
were isolated from the ribcages of 3-day-old wild-type (C57BL/6J) or
Glut1f/f pups as described previously57 and from the femoral heads
of 3-week-old wild-type (C57BL/6J) or Glut1f/f pups as described
previously,58 respectively, with modifications. Following digestion,
the chondrocytes were harvested and cultured in complete high-
glucose Dulbecco’s modified Eagle’s medium (DMEM; Gibco;
#31053028) supplemented with 10% fetal bovine serum (FBS;
Gibco; #10437), 2 mmol·L−1 L-glutamine (Gibco; #A2916801), and
1% penicillin/streptomycin. According to the experimental design,
the primary chondrocytes were initially seeded at a density of 50 ×
104 cells per well, 25 × 104 cells per well, or 5 × 104 cells per well in
12-well, 24-well or 96-well plates. For Glut1f/f chondrocytes, the day
after plating, the cells were transduced with adenoviruses
expressing GFP (Ad-Con; Vector Development Lab) or Cre (Ad-Cre;
Vector Development Lab) at a multiplicity of 50 in the presence of
polybrene (10 μg·mL−1) (Millipore; #TR-1003-G) in viral infection
medium (high-glucose DMEM supplemented with 2% FBS and
2mmol·L−1 L-glutamine) for 24 h. Following viral infection, the cells
were cultured in complete medium for 24 h to enable cell recovery
and gene expression. After recovery from viral transduction, the
cells were refreshed with complete medium containing high-
glucose DMEM or glucose-free DMEM according to the following
experimental purposes. For the longitudinal hypertrophic differ-
entiation assay, costal chondrocytes were cultured in differentiation
medium (complete medium containing 50mg·mL−1 ascorbic acid
and 10mmol·L−1 β-glycerophosphate) and allowed to mature for
up to 10 d, as indicated.
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Quantitative gene expression and western blot analyses
RNA was isolated from primary chondrocytes using an RNeasy
Mini kit (Qiagen; #74134). cDNA synthesis (iScript cDNA synthesis
kit; Bio-Rad; #1708841) and real-time qPCR (SYBR master mix; Bio-
Rad; #172-5274) were performed according to the manufacturers’
instructions. Primers specific for Glut1, Glut3, Glut4, Glut5, Glut6,
Glut9, Acan, Col2a1, Mmp13, Adamts5, P4ha1, P4ha2, and β-actin
were used, and the sequences are presented in Supplemental
Table 1. Western blot analyses were conducted with protein
lysates from primary articular chondrocytes. The following primary
antibodies were used: Gls (1:500; Abcam; #ab2110382), Glut1
(1:500; Cell Signaling Technology; #1239S), phospho-S6 protein
(1:1 000; Cell Signaling Technology; #2211S), S6 protein (1:1 000;
Cell Signaling Technology; #2217S) and β-actin (1:4 000; Sigma-
Aldrich, #2228) antibodies.

Metabolic assays and analyses
After treatment, aliquots of the culture media and the cell
cultures were analyzed for glucose consumption, lactate
production and ATP production. The extracellular glucose
concentrations or glutamine concentrations were measured
using a Glucose (HK) Assay Kit (Sigma-Aldrich; #GAHK-20) or a
Glutamine Detection Assay Kit (Abcam; #ab197011), respectively.
Glucose consumption or glutamine consumption during the
period of treatment was then calculated by determining the
difference in the level of each nutrient in the medium before vs
after treatment. For extracellular lactate measurement, an
L-Lactate Assay Kit (Eton Biosciences, Inc.; #120001100A) was
used, and lactate production within the time of treatment was
obtained by subtracting the lactate level in the medium before
treatment from the lactate level in the medium after treatment.
DNA content was evaluated with Hoechst 33342 solution
(Thermo Fisher Scientific; #62249). Glucose consumption, gluta-
mine consumption, and lactate production within 24 h were all
normalized by the DNA content in each corresponding well. All
aforementioned assays were performed according to the
manufacturers’ instructions.

Oxygen consumption rate measurement with a Seahorse XF Cell
Mito Stress Test
Chondrocytes were plated in XF96 Seahorse plates at a density of
40 000 cells per well. Culture and treatment regimens were
followed as described previously. After treatment, the cells were
lifted from the regular culture plates and plated on Seahorse XF
96-well plates for 4–6 h. One hour before the test, the cells were
switched to Seahorse XF base medium (Agilent Technologies;
#103335-100) supplemented with 5.5 mmol·L−1 glucose and
2 mmol·L−1 GlutaMAX and further incubated in a CO2-free
incubator for 1 h. Oligomycin, FCCP (carbonyl cyanide-p-trifluor-
omethoxyphenylhydrazone) and antimycin A/rotenone from a
Seahorse XF Cell Mito Stress Test Kit (Agilent Technologies;
#103015-100) were prepared in XF assay medium with final
concentrations of 1 mmol·L−1, 0.5 mmol·L−1 and 1 mmol·L−1,
respectively, and were serially injected to measure the OCRs of
cells in an XF96 plate. ATP production and ROS generation were
calculated based on the Seahorse data according to the
manufacturer’s instructions.

Hydroxyproline content measurement with cartilage explant
cultures
GP cartilage at P5 or AC cartilage at P14 was carefully dissected
from metaphyseal regions or femoral heads of Glut1Agc1ER and
Glut1f/f pups, respectively. The explants were cultured in 24-well
plates and treated with 4-hydroxytamoxifen (Sigma-Aldrich;
#H7904) at a concentration of 10 μmol·L−1 for 72 h. Following
treatment, the explants were switched to regular complete medium
and cultured for 10 d. Upon completion of culture, the explants
were removed from plates and examined for hydroxyproline

content using a Hydroxyproline Assay Kit (Abcam; #ab222941).
The hydroxyproline content was normalized to the tissue weight.

Glucose and glutamine labeling experiments and intracellular
metabolite analyses
Glut1f/f articular chondrocytes and costal chondrocytes were isolated
and seeded at the desired densities as described above. Following
adenoviral transduction and recovery, 2mmol·L−1 [U-13C5] glutamine
(Cambridge Isotope Laboratories; #CLM-1822) was added to
glutamine-free complete medium. After 24 h of labeling, the cells
were harvested and extracted as previously described.59 The samples
were analyzed with a Luna aminopropyl column (3 μmol·L−1,
150mm× 1.0mm ID, Phenomenex) coupled to a Dionex UltiMate®

3000 RSLCnano LC system. The column was used in hydrophilic
interaction (HILIC) mode with the following mobile phases and
gradient: A= 95% water, 5% acetonitrile (ACN), 10mmol·L−1

ammonium hydroxide (NH4OH), 10mmol·L−1 ammonium acetate
(NH4Ac); B= 95% ACN, 5% water; 100%–0% B from 0–45min and
0% B from 45–50min. The flow rate was 50 μL·min−1. MS detection
was carried out on a Thermo Q Exactive Plus mass spectrometer in
negative mode at 70 000 resolving power.

Statistical analyses
All data are expressed as the mean ± SD. The results were analyzed
with GraphPad Prism (GraphPad Software Inc.). Comparisons
between two groups were performed using two-tailed unpaired
Student’s t tests. One-way analysis of variance (ANOVA) was used
when comparing multiple groups and was followed by the
Bonferroni test as appropriate for subsequent pairwise (group)
comparisons. A P value < 0.05 was considered to indicate statistical
significance.
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