136 research outputs found

    A Gauss-Seidel projection method with the minimal number of updates for stray field in micromagnetic simulations

    Full text link
    Magnetization dynamics in magnetic materials is often modeled by the Landau-Lifshitz equation, which is solved numerically in general. In micromagnetic simulations, the computational cost relies heavily on the time-marching scheme and the evaluation of stray field. Explicit marching schemes are efficient but suffer from severe stability constraints, while nonlinear systems of equations have to be solved in implicit schemes though they are unconditionally stable. A better compromise between stability and efficiency is the semi-implicit scheme, such as the Gauss-Seidel projection method (GSPM) and the second-order backward differentiation formula scheme (BDF2). At each marching step, GSPM solves several linear systems of equations with constant coefficients and updates the stray field several times, while BDF2 updates the stray field only once but solves a larger linear system of equations with variable coefficients and a nonsymmetric structure. In this work, we propose a new method, dubbed as GSPM-BDF2, by combing the advantages of both GSPM and BDF2. Like GSPM, this method is first-order accurate in time and second-order accurate in space, and is unconditionally stable with respect to the damping parameter. However, GSPM-BDF2 updates the stray field only once per time step, leading to an efficiency improvement of about 60%60\% than the state-of-the-art GSPM for micromagnetic simulations. For Standard Problem \#4 and \#5 from National Institute of Standards and Technology, GSPM-BDF2 reduces the computational time over the popular software OOMMF by 82%82\% and 96%96\%, respectively. Thus, the proposed method provides a more efficient choice for micromagnetic simulations

    Maximal quantum interaction between free electrons and photons

    Full text link
    The emerging field of free-electron quantum optics enables electron-photon entanglement and holds the potential for generating nontrivial photon states for quantum information processing. Although recent experimental studies have entered the quantum regime, rapid theoretical developments predict that qualitatively unique phenomena only emerge beyond a certain interaction strength. It is thus pertinent to identify the maximal electron-photon interaction strength and the materials, geometries, and particle energies that enable one to approach it. We derive an upper limit to the quantum vacuum interaction strength between free electrons and single-mode photons, which illuminates the conditions for the strongest interaction. Crucially, we obtain an explicit energy selection recipe for electrons and photons to achieve maximal interaction at arbitrary separations and identify two optimal regimes favoring either fast or slow electrons over those with intermediate velocities. We validate the limit by analytical and numerical calculations on canonical geometries and provide near-optimal designs indicating the feasibility of strong quantum interactions. Our findings offer fundamental intuition for maximizing the quantum interaction between free electrons and photons and provide practical design rules for future experiments on electron-photon and electron-mediated photon-photon entanglement. They should also enable the evaluation of key metrics for applications such as the maximum power of free-electron radiation sources and the maximum acceleration gradient of dielectric laser accelerators

    Intrinsic and tunable quantum anomalous Hall effect and magnetic topological phases in XYBi2Te5

    Full text link
    By first-principles calculations, we study the magnetic and topological properties of XYBi2Te5-family (X, Y = Mn, Ni, V, Eu) compounds. The strongly coupled double magnetic atom-layers can significantly enhance the magnetic ordering temperature while keeping the topologically nontrivial properties. Particularly, NiVBi2Te5 is found to be a magnetic Weyl semimetal in bulk and a Chern insulator in thin film with both the Curie temperature (~150 K) and full gap well above 77 K. Ni2Bi2Te5, MnNiBi2Te5, NiVBi2Te5 and NiEuBi2Te5 exhibits intrinsic dynamic axion state. Among them, MnNiBi2Te5 has a Neel temperature over 200 K and Ni2Bi2Te5 even demonstrates antiferromagnetic order above room temperature. These results indicate an approach to realize high temperature quantum anomalous Hall effect and other topological quantum effects for practical applications

    A practical guide to promote informatics-driven efficient biotopographic material development

    Get PDF
    Micro/nano topographic structures have shown great utility in many biomedical areas including cell therapies, tissue engineering, and implantable devices. Computer-assisted informatics methods hold great promise for the design of topographic structures with targeted properties for a specific medical application. To benefit from these methods, researchers and engineers require a highly reusable “one structural parameter – one set of cell responses” database. However, existing confounding factors in topographic cell culture devices seriously impede the acquisition of this kind of data. Through carefully dissecting the confounding factors and their possible reasons for emergence, we developed corresponding guideline requirements for topographic cell culture device development to remove or control the influence of such factors. Based on these requirements, we then suggested potential strategies to meet them. In this work, we also experimentally demonstrated a topographic cell culture device with controlled confounding factors based on these guideline requirements and corresponding strategies. A “guideline for the development of topographic cell culture devices” was summarized to instruct researchers to develop topographic cell culture devices with the confounding factors removed or well controlled. This guideline aims to promote the establishment of a highly reusable “one structural parameter – one set of cell responses” database that could facilitate the application of informatics methods, such as artificial intelligence, in the rational design of future biotopographic structures with high efficacy

    Serum from patients with ankylosing spondylitis can increase PPARD, fra-1, MMP7, OPG and RANKL expression in MG63 cells

    Get PDF
    OBJECTIVES: To explore the effects of serum from patients with ankylosing spondylitis on the canonical Wnt/ÎČ-catenin pathway and to assess whether the serum has an osteogenic effect in MG63 cells. METHODS: MG63 cells were cultured with serum from 45 ankylosing spondylitis patients, 30 healthy controls, or 45 rheumatoid arthritis patients. The relative PPARD, fra-1, MMP7, OPG and RANKL mRNA levels were measured using quantitative real-time polymerase chain reaction. Associations between gene expression and patient demographics and clinical assessments were then analyzed. RESULTS: MG63 cells treated with serum from ankylosing spondylitis patients had higher PPARD, fra-1, MMP7 and OPG gene expression than did cells treated with serum from controls or rheumatoid arthritis patients (all

    Structural insights into molecular mechanism for N6-adenosine methylation by MT-A70 family methyltransferase METTL4

    Get PDF
    METTL4 belongs to a subclade of MT-A70 family members of methyltransferase (MTase) proteins shown to mediate N6-adenosine methylation for both RNA and DNA in diverse eukaryotes. Here, we report that Arabidopsis METTL4 functions as U2 snRNA MTase for N6−2’-O-dimethyladenosine (m6Am) in vivo that regulates flowering time, and specifically catalyzes N6-methylation of 2’-O-methyladenosine (Am) within a single-stranded RNA in vitro. The apo structures of full-length Arabidopsis METTL4 bound to S-adenosyl-L-methionine (SAM) and the complex structure with an Am-containing RNA substrate, combined with mutagenesis and in vitro enzymatic assays, uncover a preformed L-shaped, positively-charged cavity surrounded by four loops for substrate binding and a catalytic center composed of conserved residues for specific Am nucleotide recognition and N6-methylation activity. Structural comparison of METTL4 with the mRNA m6A enzyme METTL3/METTL14 heterodimer and modeling analysis suggest a catalytic mechanism for N6-adenosine methylation by METTL4, which may be shared among MT-A70 family members
    • 

    corecore