262 research outputs found

    Tuning Thermal Conductivity of Hybrid Perovskites through Halide Alloying

    Full text link
    Tuning the thermal transport properties of hybrid halide perovskites is critical for their applications in optoelectronics, thermoelectrics, and photovoltaics. Here, we demonstrate an effective strategy to modulate the thermal transport property of hybrid perovskites by halide alloying. A highly tunable thermal conductivity of mixed-halide hybrid perovskites is achieved due to halide-alloying and structural distortion. Our experimental measurements show that the room temperature thermal conductivity of MAPb(BrxI1-x)3 (x = 0-1) can be largely modulated from 0.27 W/mK (x = 0.5) to 0.47 W/mK (x = 1). Molecular dynamics simulations further demonstrate that the thermal conductivity reduction of hybrid halide perovskites results from the suppression of the mean free paths of the low-frequency acoustic and optical phonons. It is found that halide alloying and the induced structural distortion can largely increase the scatterings of optical and acoustic phonons, respectively. The confined diffusion of MA+ cations in the octahedra cage is found to act as an additional thermal transport channel in hybrid perovskites and can contribute around 10-20% of the total thermal conductivity. Our findings provide a strategy for tailoring the thermal transport in hybrid halide perovskites which may largely benefit their related applications

    Polysaccharide nanoparticles can efficiently modulate the immune response against anHIV peptide antigen

    Get PDF
    The development of an effective HIV vaccine continues to be a major health challenge since, so far, only the RV144 trial has demonstrated a modest clinical efficacy. Recently, the targeting of the 12 highly conserved protease cleavage sites (PCS1–12) has been presented as a strategy seeking to hamper the maturation and infectivity of HIV. To pursue this line of research, and because peptide antigens have low immunogenicity, we have included these peptides in engineered nanoparticles, aiming at overcoming this limitation. More specifically, we investigated whether the covalent attachment of a PCS peptide (PCS5) to polysaccharide-based nanoparticles, and their coadministration with polyinosinic:polycytidylic acid (poly(I:C)), improved the generated immune response. To this end, PCS5 was first conjugated to two different polysaccharides (chitosan and hyaluronic acid) through either a stable or a cleavable bond and then associated with an oppositely charged polymer (dextran sulfate and chitosan) and poly(I:C) to form the nanoparticles. Nanoparticles associating PCS5 by ionic interactions were used in this study as the control formulation. In vivo, all nanosystems elicited high anti-PCS5 antibodies. Nanoparticles containing PCS5 conjugated and poly(I:C) seemed to induce the strongest activation of antigen-presenting cells. Interestingly, T cell activation presented different kinetics depending on the prototype. These findings show that both the nanoparticle composition and the conjugation of the HIV peptide antigen may play an important role in the generation of humoral and cellular responsesThis work was supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health (Award No. R01AI111805, Subaward No. 41795-02) and by the European Union’s Horizon 2020 research program (NanoPilot project, Grant Agreement No. 646142). T.G.D. acknowledges a predoctoral FPU grant from the Spanish Ministry of Education, Culture and Sports (Grant No. FPU14/05866)S

    Advances in the study of B cells in renal ischemia-reperfusion injury

    Get PDF
    Renal ischemia-reperfusion injury (IRI) is a non-negligible clinical challenge for clinicians in surgeries such as renal transplantation. Functional loss of renal tubular epithelial cell (TEC) in IRI leads to the development of acute kidney injury, delayed graft function (DGF), and allograft rejection. The available evidence indicates that cellular oxidative stress, cell death, microvascular dysfunction, and immune response play an important role in the pathogenesis of IRI. A variety of immune cells, including macrophages and T cells, are actively involved in the progression of IRI in the immune response. The role of B cells in IRI has been relatively less studied, but there is a growing body of evidence for the involvement of B cells, which involve in the development of IRI through innate immune responses, adaptive immune responses, and negative immune regulation. Therefore, therapies targeting B cells may be a potential direction to mitigate IRI. In this review, we summarize the current state of research on the role of B cells in IRI, explore the potential effects of different B cell subsets in the pathogenesis of IRI, and discuss possible targets of B cells for therapeutic aim in renal IRI

    WTC2005-63258 RESEARCH ON THE IDENTIFICATION METHODS OF FRICTION IN KINEMATICAL JOINTS OF MECHANICAL SYSTEMS

    Get PDF
    ABSTRACT This paper describes two approaches for the simultaneous identification of the coulomb and viscous parameters in kinematical joints. One is a time-domain method (TDM) and the other is a frequency-domain method (FDM). Simulation shows that both of the two methods have good performances in identifying friction at high SNR (90dB). But at low SNR (20dB), the estimation accuracy of the frequency-domain method is higher than that of the time-domain method. A field experiment employing a linkage mechanism driven by motor is also carried out. The experimental results obtained by the two approaches are almost identical under different experiment conditions. It has been concluded that the presented identification methods of friction in kinematical joints are correct and applicable. INTRODUCTION Kinematical joint is an absolutely necessary structural connection in mechanical systems. The kinematical joint is responsible for transferring energy to a remote site, and may change the type of motion, as needed. The characteristics of kinematical joints have been studied in many paper

    Henipavirus zoonosis: outbreaks, animal hosts and potential new emergence

    Get PDF
    Hendra virus (HeV) and Nipah virus (NiV) are biosafety level 4 zoonotic pathogens causing severe and often fatal neurological and respiratory disease. These agents have been recognized by the World Health Organization as top priority pathogens expected to result in severe future outbreaks. HeV has caused sporadic infections in horses and a small number of human cases in Australia since 1994. The NiV Malaysia genotype (NiV-M) was responsible for the 1998–1999 epizootic outbreak in pigs with spillover to humans in Malaysia and Singapore. Since 2001, the NiV Bangladesh genotype (NiV-B) has been the predominant strain leading to outbreaks almost every year in Bangladesh and India, with hundreds of infections in humans. The natural reservoir hosts of HeV and NiV are fruit bats, which carry the viruses without clinical manifestation. The transmission pathways of henipaviruses from bats to humans remain poorly understood. Transmissions are often bridged by an intermediate animal host, which amplifies and spreads the viruses to humans. Horses and pigs are known intermediate hosts for the HeV outbreaks in Australia and NiV-M epidemic in Malaysia and Singapore, respectively. During the NiV-B outbreaks in Bangladesh, following initial spillover thought to be through the consumption of date palm sap, the spread of infection was largely human-to-human transmission. Spillover of NiV-B in recent outbreaks in India is less understood, with the primary route of transmission from bat reservoir to the initial human infection case(s) unknown and no intermediate host established. This review aims to provide a concise update on the epidemiology of henipaviruses covering their previous and current outbreaks with emphasis on the known and potential role of livestock as intermediate hosts in disease transmission. Also included is an up-to-date summary of newly emerging henipa-like viruses and animal hosts. In these contexts we discuss knowledge gaps and new challenges in the field and propose potential future directions

    Investigating the L-Glu-NMDA receptor-H2S-NMDA receptor pathway that regulates gastric function in rats’ nucleus ambiguus

    Get PDF
    BackgroundIn previous investigations, we explored the regulation of gastric function by hydrogen sulfide (H2S) and L-glutamate (L-Glu) injections in the nucleus ambiguus (NA). We also determined that both H2S and L-Glu have roles to play in the physiological activities of the body, and that NA is an important nucleus for receiving visceral sensations. The purpose of this study was to explore the potential pathway link between L-Glu and H2S, resulting in the regulation of gastric function.MethodsPhysiological saline (PS), L-glutamate (L-Glu, 2 nmol), NaHS (2 nmol), D-2-amino-5-phopho-novalerate (D-AP5, 2 nmol) + L-Glu (2 nmol), aminooxyacetic acid (AOAA, 2 nmol) + L-Glu (2 nmol), D-AP5 (2 nmol) + NaHS (2 nmol) were injected into the NA. A balloon was inserted into the stomach to observe gastric pressure and for recording the changes of gastric smooth muscle contraction curve. The gastric fluid was collected by esophageal perfusion and for recording the change of gastric pH value.ResultsInjecting L-Glu in NA was found to significantly inhibit gastric motility and promote gastric acid secretion in rats (p < 0.01). On the other hand, injecting the PS, pre-injection N-methyl-D-aspartate (NMDA) receptor blocker D-AP5, cystathionine beta-synthase (CBS) inhibitor AOAA and re-injection L-Glu did not result in significant changes (p > 0.05). The same injection NaHS significantly inhibit gastric motility and promote gastric acid secretion in rats (p < 0.01), but is eliminated by injection D-AP5 (p > 0.05).ConclusionThe results indicate that both exogenous L-Glu and H2S injected in NA regulate gastric motility and gastric acid secretion through NMDA receptors. This suggests that NA has an L-Glu-NMDA receptor-CBS-H2S pathway that regulates gastric function

    Toll-like Interleukin 1 Receptor Regulator Is an Important Modulator of Inflammation Responsive Genes

    Get PDF
    TILRR (Toll-like interleukin-1 receptor regulator), a transcript variant of FREM1, is a novel regulatory component, which stimulates innate immune responses through binding to IL-1R1 (Interleukin-1 receptor, type 1) and TLR (Toll-like receptor) complex. However, it is not known whether TILRR expression influences other genes in the NFκB signal transduction and pro-inflammatory responses. Our previous study identified FREM1 as a novel candidate gene in HIV-1 resistance/susceptibility in the Pumwani Sex worker cohort. In this study, we investigated the effect of TILRR overexpression on expression of genes in the NFκB signaling pathway in vitro. The effect of TILRR on mRNA expression of 84 genes related to NFκB signal transduction pathway was investigated by qRT-PCR. Overexpression of TILRR on pro-inflammatory cytokine/chemokine(s) secretion in cell culture supernatants was analyzed using Bioplex multiplex bead assay. We found that TILRR overexpression significantly influenced expression of many genes in HeLa and VK2/E6E7 cells. Several cytokine/chemokine(s), including IL-6, IL-8 (CXCL8), IP-10, MCP-1, MIP-1β, and RANTES (CCL5) were significantly increased in the cell culture supernatants following TILRR overexpression. Although how TILRR influences the expression of these genes needs to be further studied, we are the first to show the influence of TILRR on many genes in the NFκB inflammatory pathways. The NFκB inflammatory response pathways are extremely important in microbial infection and pathogenesis, including HIV-1 transmission. Further study of the role of TILRR may identify the novel intervention targets and strategies against HIV infection

    Metal-Organic Frameworks/Heterojunction Structures for Surface-Enhanced Raman Scattering with Enhanced Sensitivity and Tailorability.

    Get PDF
    Metal-organic frameworks (MOFs), which are composed of crystalline microporous materials with metal ions, have gained considerable interest as promising substrate materials for surface-enhanced Raman scattering (SERS) detection via charge transfer. Research on MOF-based SERS substrates has advanced rapidly because of the MOFs' excellent structural tunability, functionalizable pore interiors, and ultrahigh surface-to-volume ratios. Compared with traditional noble metal SERS plasmons, MOFs exhibit better biocompatibility, ease of operation, and tailorability. However, MOFs cannot produce a sufficient limit of detection (LOD) for ultrasensitive detection, and therefore, developing an ultrasensitive MOF-based SERS substrate is imperative. To the best of our knowledge, this is the first study to develop an MOFs/heterojunction structure as an SERS enhancing material. We report an in situ ZIF-67/Co(OH)2 heterojunction-based nanocellulose paper (nanopaper) plate (in situ ZIF-67 nanoplate) as a device with an LOD of 0.98 nmol/L for Rhodamine 6G and a Raman enhancement of 1.43 Ă— 107, which is 100 times better than that of the pure ZIF-67-based SERS substrate. Further, we extend this structure to other types of MOFs and develop an in situ HKUST-1 nanoplate (with HKUST-1/Cu(OH)2). In addition, we demonstrate that the formation of heterojunctions facilitates efficient photoinduced charge transfer for SERS detection by applying the Mx(OH)y-assisted (where M = Co, Cu, or other metals) MOFs/heterojunction structure. Finally, we successfully demonstrate the application of medicine screening on our nanoplates, specifically for omeprazole. The nanoplates we developed still maintain the tailorability of MOFs and perform high anti-interference ability. Our approach provides customizing options for MOF-based SERS detection, catering to diverse possibilities in future research and applications
    • …
    corecore