198 research outputs found

    Raising the abstraction level of hardware software co-designs

    Get PDF
    As lithographic processes’ size to manufacture transistors shrink, the number of available transistors on integrated circuits (IC) increases. Newly manufactured ICs require innovations to leverage improved performances or area occupation, and feature more and more components on the same chip, which work together and/or independently to provide an advanced set of functions. The complexity of hardware design flows consequently increased: from circuit description to functional verification and in-system interface, every stage is now more and more driven by a cross-product function between a set of reusable functional units and constraints to target a specific technology (ASIC, FPGAs etc…) and configuration. This diversity in the possible outputs for a set of components calls for the development of new methodologies to raise the abstraction level in the design flows. A better abstraction allows optimizing and automating more processes, from component specification to final implementation and interfacing. New Abstraction levels have always emerged through industry standards like Verilog and VHDL for digital circuit description, SystemVerilog/UVM/e for functional verification, or by vendor specific toolchains. However, standards and software toolchains usually lack flexibility as they operate for a bounded range of functionalities. This thesis presents some novel applications covering various stages of the design flow, ranging from digital design input (register file generator) and ASIC circuit implementation (Hierarchical Floorplaning), up to in-system IC integration (Part design language). They are backed by a generic software design methodology based on functional programming used to develop domain specific languages embedded in the TCL interpreter. To complete the design flow path from circuit implementation to software integration, a hardware-software interfacing point linked with the Register File Generator design tool will be presented. It is based on a generic and innovative XML-Data binding technology which was developed during this work. The iterative loop between application definition and flexible software components reuse presented along this work also provides a general guideline to develop future design flow components, and guarantee their integration in any target environment

    AstroPix: Investigating the Potential of Silicon Pixel Sensors in the Future of Gamma-ray Astrophysics

    Get PDF
    This paper details preliminary photon measurements with the monolithic silicon detector ATLASPix, a pixel detector built and optimized for the CERN experiment ATLAS. The goal of this paper is to determine the promise of pixelated silicon in future space-based gamma-ray experiments. With this goal in mind, radioactive photon sources were used to determine the energy resolution and detector response of ATLASPix; these are novel measurements for ATLASPix, a detector built for a ground-based particle accelerator. As part of this project a new iteration of monolithic Si pixels, named AstroPix, have been created based on ATLASPix, and the eventual goal is to further optimize AstroPix for gamma-ray detection by constructing a prototype Compton telescope.The energy resolution of both the digital and analog output of ATLASPix is the focus of this paper, as it is a critical metric for Compton telescopes. It was found that with the analog output of the detector, the energyresolution of a single pixel was 7.69 +/- 0.13% at 5.89 keV and 7.27 +/- 1.18% at 30.1 keV, which exceeds the conservative baseline requirements of 10% resolution at 60 keV and is an encouraging start to an optimistic goal of<2% resolution at 60 keV. The digital output of the entire detector consistently yielded energy resolutions that exceeded 100% for different sources. The analog output of the monolithic silicon pixels indicates that thisis a promising technology for future gamma-ray missions, while the analysis of the digital output points to the need for a redesign of future photon-sensitive monolithic silicon pixel detectors.Comment: 12 pages, proceedings, International Society for Optics and Photonics (SPIE) Astronomical Telescopes and Instrumentation Digital Forum, Dec. 14-18 202

    AstroPix: investigating the potential of silicon pixel sensors in the future of gamma-ray astrophysics

    Get PDF
    This paper details preliminary photon measurements with the monolithic silicon detector ATLASPix, a pixel detector built and optimized for the CERN experiment ATLAS. The goal of this paper is to determine the promise of pixelated silicon in future space-based gamma-ray experiments. With this goal in mind, radioactive photon sources were used to determine the energy resolution and detector response of ATLASPix; these are novel measurements for ATLASPix, a detector built for a ground-based particle accelerator. As part of this project a new iteration of monolithic Si pixels, named AstroPix, have been created based on ATLASPix, and the eventual goal is to further optimize AstroPix for gamma-ray detection by constructing a prototype Compton telescope.The energy resolution of both the digital and analog output of ATLASPix is the focus of this paper, as it is a critical metric for Compton telescopes. It was found that with the analog output of the detector, the energyresolution of a single pixel was 7.69 +/- 0.13% at 5.89 keV and 7.27 +/- 1.18% at 30.1 keV, which exceeds the conservative baseline requirements of 10% resolution at 60 keV and is an encouraging start to an optimistic goal of<2% resolution at 60 keV. The digital output of the entire detector consistently yielded energy resolutions that exceeded 100% for different sources. The analog output of the monolithic silicon pixels indicates that thisis a promising technology for future gamma-ray missions, while the analysis of the digital output points to the need for a redesign of future photon-sensitive monolithic silicon pixel detectors

    Growth of high quality InP layers in STI trenches on miscut Si (001) substrates

    Full text link
    In this work, we report the selective area epitaxial growth of high quality InP in shallow trench isolation (STI) structures on Si (0 0 1) substrates 6° miscut toward (1 1 1) using a thin Ge buffer layer. We studied the impact of growth rates and steric hindrance effects on the nano-twin formation at the STI side walls. It was found that a too high growth rate induces more nano-twins in the layer and results in InP crystal distortion. The STI side wall tapering angle and the substrate miscut angle induced streric hindrance between the InP facets and the STI side walls also contribute to defect formation. In the [-1 1 0] orientated trenches, when the STI side wall tapering angle is larger than 10°, crystal distortion was observed while the substrate miscut angle has no significant impact on the InP defect formation. In the [-1 1 0] trenches, both the increased STI tapering angle and the substrate miscut angle induce high density of defects. With a small STI tapering angle and a thin Ge layer, we obtained extended defect free InP in the top region of the [1 1 0] trenches with aspect ratio larger than 2

    Prograde and retrograde metasomatic reactions in mineralised magnesium-silicate skarn in the Cu-Au Ertsberg East Skarn System, Ertsberg, Papua Province, Indonesia

    Get PDF
    The 2.7–2.9 Ma Ertsberg East Skarn System (EESS) is a world-class Cu-Au skarn that formed within and adjacent to an intrusion within a paleodepth of 0.5 km and >2.5 km. Its economic mineralisation developed by sustained reaction of magmatic fluid with contact metamorphosed siliciclastic and carbonate rocks at the margin of the adjacent Ertsberg quartz monzodiorite intrusion. Based on high-resolution mineral mapping, chemical analysis and thermodynamic calculations, the multistage formation processes of the exoskarn components of the EESS are examined in the context of changing pressure, temperature, fluid composition and fluid phase. We show that contact metamorphism of dolomitic sediments occurred at 51 ± 5 MPa, between 700 °C and 800 °C and in the presence of a H2O-CO2-fluid containing ~10 to ~70 mol% CO2. This prograde metamorphism formed a forsterite + diopside + calcite + phlogopite + spinel assemblage. Such forsterite-dominated skarns account for ~55 vol% of the EESS exoskarns. Rare pargasite (previously unrecognized in this deposit) formed locally in the metamorphosed carbonate sequence where the protolith was composed of supratidal evaporites with dolomitic carbonate and interlayered calc-silicate rocks. The subsequent flux of a lower pressure magmatic gas containing SO2(g) caused sulphate metasomatism. This high temperature gas alteration of the metamorphic assemblage also caused skarn Cu-Fe-sulphide mineralisation. The influx of a SO2 gas through fracture permeability occurred at a temperature between ~600 and 700 °C and caused calcite to be replaced by anhydrite, with the coupled release of H2S(g). This in-situ release of H2S(g) scavenged trace Cu from the gas phase to deposit Cu-Fe-sulphides, which make the economic value of the distinct. We demonstrate that the formation of metal sulphides within forsterite skarns of the Ertsberg East Skarn System required a minimum flux of ~1,050 Mt SO2(g) and show that volcanic degassing may have occurred over a time span of ~3,900 years. As the system waned, the ambient fluid resulted in partial retrograde serpentinization of olivine and diopside without carbonation, and at temperatures sufficiently high to preserve anhydrite.This study was partially supported by Australian Research Council funding to P. King (DP150104604 and FT130101524)

    Thinking like a man? The cultures of science

    Get PDF
    Culture includes science and science includes culture, but conflicts between the two traditions persist, often seen as clashes between interpretation and knowledge. One way of highlighting this false polarity has been to explore the gendered symbolism of science. Feminism has contributed to science studies and the critical interrogation of knowledge, aware that practical knowledge and scientific understanding have never been synonymous. Persisting notions of an underlying unity to scientific endeavour have often impeded rather than fostered the useful application of knowledge. This has been particularly evident in the recent rise of molecular biology, with its delusory dream of the total conquest of disease. It is equally prominent in evolutionary psychology, with its renewed attempts to depict the fundamental basis of sex differences. Wars over science have continued to intensify over the last decade, even as our knowledge of the political, economic and ideological significance of science funding and research has become ever more apparent

    AstroPix: novel monolithic active pixel silicon sensors for future gamma-ray telescopes

    Get PDF
    Space-based gamma-ray telescopes such as the Fermi Large Area Telescope have used single sided silicon strip detectors to track secondary charged particles produced by primary gamma-rays with high resolution. At the lower energies targeted by keV-MeV telescopes, two dimensional position information within a single detector is required for event reconstruction - especially in the Compton regime. This work describes the development of monolithic CMOS active pixel silicon sensors - AstroPix - as a novel technology for use in future gamma-ray telescopes. Based upon sensors (ATLASPix) designed for use in the ATLAS detector at the Large Hadron Collider, AstroPix has the potential to maintain high performance while reducing noise with low power consumption. This is achieved with the dual detection and readout capabilities in each CMOS pixel. The status of AstroPix development and testing, as well as outlook for future testing and application, will be presented

    AstroPix: CMOS pixels in space

    Get PDF
    Space-based gamma-ray telescopes such as the Fermi Large Area Telescope have used single sided silicon strip detectors to measure the position of charged particles produced by incident gamma rays with high resolution. At energies in the Compton regime and below, two dimensional position information within a single detector is required. Double sided silicon strip detectors are one option; however, this technology is difficult to fabricate and large arrays are susceptible to noise. This work outlines the development and implementation of monolithic CMOS active pixel silicon sensors, AstroPix, for use in future gamma-ray telescopes. Based upon detectors designed using the HVCMOS process at the Karlsruhe Institute of Technology, AstroPix has the potential to maintain the high energy and angular resolution required of a medium-energy gamma- ray telescope while reducing noise with the dual detection-and-readout capabilities of a CMOS chip. The status of AstroPix development and testing as well as outlook for application in future telescopes is presented

    Taking a positive spin: preserved initiative and performance of everyday activities across mild Alzheimer’s, vascular, and mixed dementia

    Get PDF
    Objectives: The literature commonly evaluates those daily activities which are impaired in dementia. However, in the mild stages, people with dementia (PwD) are still able to initiate and perform many of those tasks. With a lack of research exploring variations between different dementia diagnoses, this study sought to investigate those daily activities with modest impairments in the mild stages and how these compare between Alzheimer's disease (AD), vascular dementia (VaD) and mixed dementia. Methods: Staff from memory assessment services from nine National Health Service trusts across England identified and approached informal carers of people with mild dementia. Carers completed the newly revised Interview for Deteriorations in Daily Living Activities in Dementia 2 assessing the PwD's initiative and performance of instrumental activities of daily living (IADLs). Data were analysed using analysis of variance and Chi-square tests to compare the maintenance of IADL functioning across AD, VaD, and mixed dementia. Results: A total of 160 carers returned the Interview for Deteriorations in Daily Living Activities in Dementia 2, of which 109, 21, and 30 cared for someone with AD, VaD, and mixed dementia, respectively. There were significant variations across subtypes, with AD showing better preserved initiative and performance than VaD for several IADLs. Overall, PwD showed greater preservation of performance than initiative, with tasks such as preparing a hot drink and dressing being best maintained. Conclusion: Findings can help classify dementia better into subtypes in order to receive bespoke support. It suggests that interventions should primarily address initiative to improve overall functioning
    • …
    corecore