

DISSERTATION

submitted

to the

Combined Faculty for the Natural Sciences and Mathematics

of the

Ruperto‐Carola University of Heidelberg, Germany

for the degree of

Doctor of Natural Sciences

Put forward by

Richard Donald Sylvère Leys
Born in: Croix, France

Raising the abstraction level of hardware
software co-designs

Advisor: Prof. Dr. Ulrich Brüning

Date of Oral Examination: ……………………………………..

Abstract
As lithographic processes’ size to manufacture transistors shrink, the number of

available transistors on integrated circuits (IC) increases. Newly manufactured ICs require
innovations to leverage improved performances or area occupation, and feature more and
more components on the same chip, which work together and/or independently to provide
an advanced set of functions.

The complexity of hardware design flows consequently increased: from circuit
description to functional verification and in-system interface, every stage is now more and
more driven by a cross-product function between a set of reusable functional units and
constraints to target a specific technology (ASIC, FPGAs etc…) and configuration.

This diversity in the possible outputs for a set of components calls for the
development of new methodologies to raise the abstraction level in the design flows. A
better abstraction allows optimizing and automating more processes, from component
specification to final implementation and interfacing.

New Abstraction levels have always emerged through industry standards like Verilog
and VHDL for digital circuit description, SystemVerilog/UVM/e for functional verification, or
by vendor specific toolchains. However, standards and software toolchains usually lack
flexibility as they operate for a bounded range of functionalities.

This thesis presents some novel applications covering various stages of the design
flow, ranging from digital design input (register file generator) and ASIC circuit
implementation (Hierarchical Floorplaning), up to in-system IC integration (Part design
language). They are backed by a generic software design methodology based on functional
programming used to develop domain specific languages embedded in the TCL interpreter.

To complete the design flow path from circuit implementation to software
integration, a hardware-software interfacing point linked with the Register File Generator
design tool will be presented. It is based on a generic and innovative XML-Data binding
technology which was developed during this work.

The iterative loop between application definition and flexible software components
reuse presented along this work also provides a general guideline to develop future design
flow components, and guarantee their integration in any target environment.

Zusammenfassung
Die menge von Transistoren, die auf einen Integriertes Schaltung (IS) zu Verfügung

stehen steigt mit die Verkleinerung der lithographischem Prozesse. Neue erstellte IS
benötigen Innovationen um Performanz und Fläche auszunutzen, und bitten immer mehr
Komponente auf den gleichen Chip, die miteinander oder unabhängig von einander arbeiten
müssen, um ein fortgeschrittenes Satz von Funktionalitäten anzubieten.

Als Konsequenz davon, steigt die Komplexität der Design Flows mit: von Schaltung
Beschreibung bis Funktionale Verifikation und In-System Integration, jede Stufe ist immer
mehr abhängig von ein Satz von wiederverwendbarer Funktionale Einheiten und so einfach
wie möglich Einschränkungen, die zu einen bestimmte Technologie und Ausstattung gezielt
sind.

Diese Vielfältigkeit der möglichen Ausgaben für einen gegebenen Satz von
Komponente spricht für die Entwicklung von Methodik, die den Abstraktion Grad in Design
Flows erhöht. Einen besseren solchen Abstraktion Grad erlaubt eine Optimierung und
verbesserte Automatisierung der Design Prozesse, von Spezifikation bis Endgültigen
Implementierung und Integrierung.

Neuen Abstraktion Grade stellen sich typischerweise heraus durch Industrie
Standarte, wie Verilog oder VHDL für Digitale Schaltungen Beschreibung,
SystemVerilog/UVM/e für Funktionale Verifikation, oder durch Vendor eigentümliche
Lösungen. Standarte und Software greifen allerdings immer auf einen bestimmten Untersatz
der Design Flows zu, und fehlen dadurch die benötigte Flexibilität um sich mit anderen
Aktoren geschickt zu integrieren.

Diese Dissertation stellt eine ausgewählten Satz von neuen Anwendung vor, die
verschiedenen Design Flow Stufen decken: Digital Schaltung Beschreibung (Register File
Generator), ASIC Implementierung (Hierarchical Floorplaning) und PCB Design (Part
Language). Diese werden von einen Generischen Software Programmierung Methodik
unterstützt, die sich auf Funktional Programmierung Konzepte bezieht, um Domain Specific
Languages in dem TCL Interpreter einzukapseln.

Um den Design Flow Pfad zu vervollständigen, einen Hardware-Software
Schnittstelle, die sich mit dem Register File Generator integrieren lässt wird eingeführt. Sie
greift auf einen generischen und bahnbrechende XML-Data Binding Technology, die währen
diese Thesis entworfen wurde.

Die Entwicklung Schleife, zwischen Anwendung Spezifikation und anpassungsfähige
Software Komponente Wiederverwendung hin und her, die durch dieser Arbeit vorgestellt
wird, bittet sich als Leitfaden für zukünftige Entwicklungen von Design Flow Aktoren.

Table of Contents
1 Introduction ... 1

1.1 Stakes .. 4

1.2 Contributions ... 5

2 Functional programing and domain specific languages .. 7

2.1 Imperative and Functional Programming styles ... 8

2.1.1 The Imperative programming style ... 9

2.1.2 The Functional programming style .. 11

2.1.2.1 An example in CLISP .. 13

2.1.2.2 Recursive function call... 14

2.1.2.3 List/Elements Array processing ... 15

2.1.3 Discussion .. 16

2.2 Merging styles: The Scala programming language example 19

2.2.1 Type definition and Type Inference .. 19

2.2.1.1 Type Inference ... 19

2.2.1.2 Implicits ... 20

2.2.2 Closures and high-order functions .. 22

2.2.2.1 Anonymous functions.. 22

2.2.2.2 Closures ... 22

2.2.2.3 High-order functions ... 23

2.2.3 Currying and Partial Functions .. 24

2.2.4 Discussion .. 25

2.3 Domain Specific Language design: LL and LR-based parsing 27

2.3.1 LL Parsing in Java: ANTLR .. 29

2.3.2 Parsing in Scala .. 31

2.3.3 Discussion .. 32

2.4 Embedded Domain Specific Language (EDSL) ... 33

2.4.1 Functional Programming for EDSL ... 36

2.4.2 Discussion .. 39

3 Embedded Domain Specific Language design in TCL ..41

3.1 The TCL programming language .. 42

3.1.1 Namespaces and packages.. 45

3.1.2 Self evaluation ... 47

3.1.3 Stack frame and execution level ... 48

3.1.4 Pitfalls .. 51

3.2 Implementation of Closures in TCL ... 53

3.2.1 First implementation (v1 and v2) .. 55

3.2.1.1 Implementation ... 55

3.2.1.2 Variable detection issue .. 57

3.2.1.3 Run level selection .. 58

3.2.1.4 Variable protection and implicit naming ... 59

3.2.1.5 Limitations ... 61

3.2.2 Second implementation (v3) ... 61

3.2.2.1 Variable value resolution .. 62

3.2.2.2 Variable update resolution.. 63

3.2.2.3 Lambda support .. 63

3.2.2.3.1 Implementation .. 65

3.2.3 Discussion .. 67

3.3 Embedded DSL in TCL .. 68

3.3.1 Introduction with the incrTCL library .. 68

3.3.2 Improved extensibility with the Next Scripting Framework (NSF) 73

3.3.2.1 Switching frameworks: semantic and feature issues 77

3.3.2.2 Dynamic API Enrichment ... 79

3.3.2.2.1 Special procedures .. 79

3.3.2.2.2 NX mixins ... 80

3.3.3 Discussion and outlook ... 82

4 Components for Hardware Software co-design.. 83

4.1 Register file generator ... 85

4.1.1 RFS: Workflow and limitations .. 87

4.1.1.1 XML Format issues .. 87

4.1.1.2 Implementation in C .. 88

4.1.2 RFG implementation ... 90

4.1.2.1 Language elements ... 90

4.1.2.2 In-depth customisation: Attributes specification ... 94

4.1.2.3 An example .. 96

4.1.3 RFS backward compatibility .. 97

4.1.4 Processing chain components ... 97

4.1.4.1 Hierarchical address calculation .. 97

4.1.4.1.1 Addressing strategies selection ... 100

4.1.4.2 Verilog HDL .. 101

4.1.4.3 Documentation .. 101

4.1.4.4 XML output .. 102

4.1.5 Software interface for the Java Virtual Machine using Scala 104

4.1.5.1 Simple device interfacing using mmap .. 104

4.1.5.2 Native function binding in the Java Application Space 105

4.1.5.3 Scala API for RFG ... 106

4.2 Hierarchical floorplanning for Integrated Circuits... 107

4.2.1 Hierarchy-centric macro placement .. 110

4.2.2 Motivation for a generic programming interface ... 113

4.2.3 A scene graph programming interface .. 114

4.2.3.1 Floorplanning properties requirements .. 114

4.2.3.2 Abstract API in TCL .. 116

4.2.3.2.1 Abstract class hierarchy .. 116

4.2.3.2.2 Container shape and orientation .. 117

4.2.3.2.3 Absolute coordinates resolution ... 118

4.2.3.3 Application interface ... 118

4.2.3.3.1 Example: Floorplan prototyping using Library Exchange Format files .. 119

4.2.4 Generic building blocks for floorplanning ... 122

4.2.5 Generic data representation using SVG .. 124

4.2.6 Real placement in Cadence Encounter.. 125

4.2.6.1 Application interface ... 127

4.2.7 Outlook .. 127

4.2.7.1 Multiple tree-view support ... 127

4.3 Part description language.. 129

4.3.1 Language description .. 130

4.3.1.1 Attributes... 130

4.3.1.2 Abstraction level improvement example: Differential Pairs 131

4.3.1.3 Output generator rules ... 131

4.3.2 Hardware description language (HDL) integration scenarios 132

4.3.3 Tool integration examples... 133

4.3.3.1 SVG View ... 133

4.3.3.2 Cadence capture integration ... 136

4.3.3.2.1 Large part support: usage example of the generic group attribute 137

4.3.4 Outlook and integration in actual work .. 138

4.4 OOXOO: A dynamic XML data binding interface ... 139

4.4.1 Data binding for XML .. 139

4.4.1.1 Automatic data model generation and validation 140

4.4.1.2 Flat binding .. 142

4.4.1.3 Application Binding ... 143

4.4.2 Dynamic hierarchy .. 144

4.4.2.1 Buffers and Data units ... 145

4.4.2.1.1 Buffers ... 146

4.4.2.1.2 DataUnits .. 148

4.4.2.2 Element Structural Buffer ... 148

4.4.2.2.1 Simple Data handling .. 148

4.4.2.2.2 Hierarchy handling .. 150

4.4.2.3 The simple data types issue .. 150

4.4.2.3.1 Implicit conversion trap .. 151

4.4.2.4 Collections ... 152

4.4.2.4.1 DataUnit production ... 153

4.4.2.4.2 DataUnit consumption .. 153

4.4.3 Marshalling and un-marshalling: the I/O layer ... 155

4.4.3.1 Handling non hierarchical buffer levels: the collection case 158

4.4.3.2 XML I/O ... 159

4.4.3.3 JSON I/O .. 160

4.4.4 Register file application interface ... 161

4.4.4.1 Register file software interaction characteristics 161

4.4.4.1.1 Read-Modify-Write support .. 161

4.4.4.1.2 Scalable Multiple register file access .. 162

4.4.4.2 The Register file OOXOO interface .. 162

4.4.4.2.1 The value buffer .. 163

4.4.4.2.2 The Device Buffer .. 164

4.4.4.2.3 The Field value .. 165

4.4.4.3 The generic transaction extension .. 165

4.4.4.3.1 The transaction buffer ... 166

4.4.4.3.2 Transaction State management .. 167

4.4.4.3.3 Target host selection: Transaction initiator .. 167

4.4.4.4 Final ValueBuffer configuration .. 168

4.4.5 Conclusion ... 169

5 Conclusion and Outlooks ...171

5.1 Abstraction in hardware description languages ... 172

5.2 Design flow libraries open sourcing .. 174

Appendix A. Software setup .. 5

Uni. Heidelberg - LS Rechnerarchitektur | Introduction 1

1 Introduction

ollowing the famous Moore’s law on the growth of transistor count in an
integrated circuit, the complexity of hardware designs has grown over time, as
more fields of application developed: microcontrollers, mobile processors,

graphics processors, application specific co-processors etc…

Figure 1-1 Moore’s law applied to microprocessor transistors count [1] (Logarithmic scales)

Meanwhile, complexity in terms of number of transistors also means complexity in
terms of number of features that are integrable in a system on a chip (SOC), and by
extension, it impacts a project’s design space in terms of:

 Architecture specification
 Integration of components
 Testing and verification
 Feasibility
 Human resources and time to

market costs

This last criterion being quite
prominent, especially in the context of a start-
up, as business financing entities tend to look
for a rapid high margin return on investment,
underscoring the need to reach the break-
even point [2] [3] as fast as possible.

F

Figure 1-2 Break-even point representation [3]

2 Introduction | Uni. Heidelberg - LS Rechnerarchitektur

This surge in complexity has forced research and industry over the past 25 to 30 years
to develop new tools, languages and methodologies to help tackle issues at each step in the
design flow, a few examples being:

 Digital Hardware design input
o Hardware description language (HDL)
o Finite state machine editors
o Linting etc…

 Simulation and verification
o Simple simulation
o Advanced verification

 Technology mapping
o Synthesis
o Timing analysis
o Signal integrity
o Power analysis

On the other hand, with the help of these new design methodologies, sub-designs
became more and more reusable, allowing the optimisation of the engineering costs by
sharing them over multiple product lines, and/or buying some from third parties (they are
then called IP Blocks), as illustrated in Figure 1-3.

Therefore, more than ever, engineering teams have to implement features that are
likely to be integrated in different designs and mapped to various technologies, while keeping
up with the constraints of all possible configurations.

Figure 1-3 Component reusability in designs

Uni. Heidelberg - LS Rechnerarchitektur | Introduction 3

In Figure 1-4, some of the main design flow steps to produce an integrated circuit are
presented (each also embeds its own sub-flow). We can see that each stage is connected to
its previous and next through an evaluation loop, building a transversal dependency across
the processes. This leads the engineering teams to facing a great variety of software to
handle each step from hardware design input to technology mapping, each of them with
varying degrees of compatibility to its successor/predecessor.

Typically, designers try to leverage this issue by creating various sets of custom
software (simple scripts for most), quite often written in a different language, or even
develop some Domain Specific Languages (DSL), that only have a localised usage, and little
interoperability.

Although modern software design tends to maximise function reusability, hardware
designers tend to throw suspicion at software experts, who usually try to create a perfect tool
that solves too many problems. Probably they are right to do so, as the typical cost and
complexity of industrial tools does not give credit to the idea of constraining any design flow
under a single solution, creating an illusion of freedom by enslavement.

Figure 1-4 Design Flow example with major steps to produce an integrated circuit

4 Introduction | Uni. Heidelberg - LS Rechnerarchitektur

1.1 Stakes

As seen so far, hardware designs are exposed to quite complex and fast evolving
design flows, and have to meet multiple constraints while minimizing redesign needs,
justifying the difficulty to offer efficient tools able to follow a project along all its
implementation phases. But moreover, software concepts trying to offer “one tool to rule
them all” are unrealistic, and contra-productive in regard to modern software designs.
What we are looking for would be then to be able to:

 Bridge the gap between abstract design concepts (Top-Down view) and
implementation (Bottom-Up construction)

 Easily specialise the design as the requirements are getting clearer
 Efficiently analyse the design at each flow step, to outline refinement iteration to

be done based on specification changes, and specification feasibility issues.

We can try to sum up those issues in one question:

In this thesis, we propose a set of open software design principles, inspired from
functional programming paradigms, applied to hardware design flow challenges, in an
attempt to raise the global design abstraction level, while not stealing control from the
designer. Although focus will be given to the TCL programming language, which is present in
most of the Electronic Design software in the industry, and the Scala programming language
for hardware-software interfacing, the presented concepts are meant to be translatable to
other technologies.

This work is structured around a presentation of the core concepts of functional
programming and domain specific language development, which lead to defining a
methodology for creation of Embedded Domain Specific Languages.

In a second time, some functional programming extensions to the TCL language are
introduced to support Embedded Domain Specific Languages in TCL.

Finally a set of chosen applications covering digital hardware design input, physical
floorplanning for integrated circuit, and high-level software interfacing are presented.

For readers not familiar with Functional Programming, it is advisable to focus on the
presented applications, and come back to the lower level concepts iteratively.

Can we marginalise the implementation of a specification, while consistently
guaranteeing behaviour and feasibility?

Uni. Heidelberg - LS Rechnerarchitektur | Introduction 5

1.2 Contributions

This work shows how learning from functional programming and domain specific
language development allowed us to build very creative and elegant software solutions to
create abstract programming interfaces inside the TCL interpreter.

The choice of the TCL dynamic language offered direct interoperability with existing
industry software, showing how applications could be developed to nicely integrate inside
existing design flows.

Beyond the applications, the proposed abstract methodologies for embedded
domain specific language development can be used as basis to develop abstract programming
interfaces, not only using the TCL language but in every possible context.

The architectures of the presented applications moreover prove that flexibility in
software can be reached by reusing generic building blocks, and actually pushing the
application-specific behaviour mostly to the binding logic layers.

6 Introduction | Uni. Heidelberg - LS Rechnerarchitektur

Uni. Heidelberg - LS Rechnerarchitektur | Functional programing and domain specific languages 7

2 Functional programing and domain specific languages

he guiding thread of this thesis is the development of software design paradigms that
are flexible enough to be adapted to design flow specifications. In this perspective, the
technological choices made when developing a software component have an impact

on the flexibility degree that can be reached. Indeed, three main criterions will have a major
impact:

1. Language features: Is the base programming language good enough to limit the
human costs of development and maintenance?

2. Acceptance: In the case of programming interfaces, are the users going to be willing
to use them, or be reluctant to learn new paradigms and syntaxes.

3. Integration: If multiple software pieces must work together, how well are they going
to integrate with each other? Are we going to need extra data exchange formats and
protocols to cover incompatibilities?

Starting from imperative programming knowledge (C/C++, Java etc…), we explored
alternative ways to design programming interfaces that would closely match design issues
encountered by hardware designers. Classical C/C++ or Java library development is a way to
go, but they provide a low level programming view to solve a problem, and are not very well
adapted to the flexibility required by top level views of designs. Moreover, non-software
experts tend to be very reluctant to verbose languages and to the usage of standard software
programming patterns.

Figure 2-1 shows the development path followed along this work. Through
experimentations with Domain Specific Language (DSL) design, which have the chance to
correctly answer issues 1 and 2, and learning about functional Programming, we developed a
way to create programming interfaces called Embedded Domain Specific Language (EDSL),
which address the three mentioned challenges. The main implementation focus will be set in
chapter 3 on the TCL programming language, as it is the first-choice language for most
concrete applications presented in chapter 4. The functional language Scala will be used as an
existing technology to support and illustrate the design patterns ported into TCL.

T

Figure 2-1 Functional Programming to EDSL development map

8 Functional programing and domain specific languages | Uni. Heidelberg - LS Rechnerarchitektur

2.1 Imperative and Functional Programming styles

istorically, computers were designed to perform computations in an automated and
faster way than humans could on their own. That is to say, basically solve
mathematical problems. Programming languages emerged as a human-

understandable way to describe some computations to be performed by computing units,
just like scientists write down and solve equations. However, those computing units
(commonly called processors) can’t understand human languages, as they are only electric
circuits which can process a simple instruction (in the form of binary digital signals [4]) and
produce outputs for the next ones. This instruction format is called a machine code, and
modern processors as well as the first one ever build still work by running such machine code.

An interesting analogy to this concept, presented in Figure 2-2, can be made with
fairground or street mechanical organs. They use a “mechanical” representation of music
notes, taking the form of a barrel or a punchcard music book, which triggers actuators
producing the desired note. The first computers were also built the same way, at the time
when computer programs would be translated to punchcards, then run by the machinery to
produce computation results.

Because the machines they are running on have special requirements related to their
architecture, the instructions present at the machine code level are not tightly related to the
initial problem description. Programming languages must therefore be compiled from a
human understandable text representation to an executable machine code format, as
presented in Figure 2-3.

H

Figure 2-2 Computers and punchcards organs are not so different

Uni. Heidelberg - LS Rechnerarchitektur | Functional programing and domain specific languages 9

This is where the story of computer programming
languages begins. The goal of a good programming language is to
allow the user to clearly and efficiently write a computer program,
while compiling to the most efficient possible instruction set for the
target machine (we define efficiency by the amount of instructions
required for a computation and the inducted power consumption)

Therefore, a trade-off at the language design has to be
made, so that it will remain easy enough for the compiler to
understand and produce optimal machine code. The first reference
book on compiler design cover (Figure 2-4, from the second
edition) [5], featured a dragon fighting with a knight, illustrating
the language syntax and associated compiler design challenge

2.1.1 The Imperative programming style

The first developed languages were designed to mirror the sequential control flow of
a program, in each of its step. This model is called imperative programming, and mostly
requires the programmer to describe the computation in its various steps that produce a
desired result. This approach makes programming quite close to the underlying computing
architecture and machine code instructions (which in turn are all the steps the machine has
to go through to produce the desired output), and keeps compiler design complexity
acceptable.

To describe all the steps of a computation, the user has to manage two aspects:

 The state, which is represented by data values hold in memory which allows keeping
track of the computation flow.

 The instructions, which work on the state and update it.

Data and instructions are the base building block of the original Von Neumann
computer architecture and its extension the Harvard architecture, in which instructions are
executed on data as fast as possible. By expressing the data and instruction flow explicitly,
the language limits the possible semantic abstraction, and thus is easily to optimise to run
fast on the underlying processor.

Figure 2-3 Simplified compile-execute flow for a program computing “1+1"

Figure 2-4 “Compilers” book [5]
cover

10 Functional programing and domain specific languages | Uni. Heidelberg - LS Rechnerarchitektur

To be more concrete, we are going to analyse a trivial program written in C [6], which
performs two operations: 𝑐 = 𝑎 + 𝐷 followed by 𝑓𝑖𝐼𝑎𝐷 = 𝑐 ∗ 𝑏. The first equation will need
an initial state which is defined statically, but could be requested from a user interface. The
source code is shown in Figure 2-5 on the left, while on the right side the actual machine
instructions generated by the compiler (GCC [7] on an x86-64 [8] architecture) is presented.
We can see that both source code and machine instructions follow the same flow. On the
machine side, (+) and (∗) are the actual computations performed by the processor, add imul

while performs memory copies and relocations which manage the state in the mov
computation machine (yellow highlights).

Figure 2-5 Imperative C program with associated machine instructions excerpt

This imperative programming style is the most widely used, and many programming
languages are designed following this logic. The piece of code we just used as illustration is of
course not useful for real applications, and most languages offer advanced features like
object-oriented programming [9] and complex design patterns [10] to structure a program
and scale it efficiently as it grows.

 1 int main() {
 2
 3 // Initial State
 4 int a = 1;
 5 int b = 2;
 6 int d = 4;
 7
 8 // Next state
 9 // Result of a + b saved
10 int c = a + b;
11
12 // Next State
13 // Result of c * d saved
14 int final = c * d;
15
16 return 0;
17 }

1 mov -0x8(%rbp),%eax
2 mov -0x4(%rbp),%edx
3 add %edx,%eax
4 mov %eax,-0x10(%rbp)
5
6 mov -0x10(%rbp),%eax
7 imul -0xc(%rbp),%eax
8 mov %eax,-0x14(%rbp)

a + b

c * d

Uni. Heidelberg - LS Rechnerarchitektur | Functional programing and domain specific languages 11

2.1.2 The Functional programming style

We just defined two aspects of an imperative program: State and Instructions. In
other words, we can say that we had to specify:

1. What do we want to reach? This is the 𝑓𝑖𝐼𝑎𝐷 = (𝑎 + 𝐷) ∗ 𝑏 specification.
2. How do we reach the goals? This is the way we wrote the source code, i.e. the control

flow.

The idea behind Functional Programming is that the user only focuses on writing the
composition of functions that will lead to a result, just like solving equations. A function, as
pure mathematical object, therefore only produces an output based on a set of immutable
inputs. This way, the source code can more closely express the desired result and be safer to
manipulate by avoiding state management, like temporary results saving, and forbidding side
effects (a function cannot modify its input arguments or surrounding context).

Historically, this concept goes back to the 1930’s and research on lambda (λ) calculus.
First published by A. Church [11] and extended by A.M. Turing [12], λ-calculus defines a
representation of computable functions as anonymous terms, which can be composed to
form transformation expressions. Programming models and λ-calculus are extensively
presented by Kluge [13], we will only give here the basic notation elements which are
relevant to understanding most of λ-calculus’ implications in functional programming.

If we consider an algebraic function, defined by an expression 𝐷𝑥𝑝𝑎 applied to a set
of input parameters 𝑥1 … 𝑥𝑛, it can be noted :

𝑓(𝑥1 … 𝑥𝑛) → 𝐷𝑥𝑝𝑎

The general form of such a function in λ-notation is:

𝑓 = 𝜆𝑥1. . . 𝑥𝑛. 𝐷𝑥𝑝𝑎 short 𝜆𝑥1. . . 𝑥𝑛. 𝐷𝑥𝑝𝑎

 𝑥1. . 𝑥𝑛 are variables representing the input parameters of 𝑓
 𝐷𝑥𝑝𝑎 is the function body, which may contain references to the 𝑥1. . . 𝑥𝑛 input

parameters, called free occurrences of 𝑥1. . . 𝑥𝑛
 𝜆𝑥1 … 𝑥𝑛 is called the binder for the free occurrences of 𝑥1. . . 𝑥𝑛 present in 𝐷𝑥𝑝𝑎.

It defines the names of variable occurrences in 𝐷𝑥𝑝𝑎 which can be bound to an
input parameter.

Applying the function to some input parameters is written:

(𝜆𝑥1. . 𝑥𝑛. 𝐷𝑥𝑝𝑎 𝑎𝑎𝑎1 …𝑎𝑎𝑎𝑛)

12 Functional programing and domain specific languages | Uni. Heidelberg - LS Rechnerarchitektur

This notation can be further refined in a n-fold nested form, or curried form, named
after Curry and Schönfinkel who introduced it in [14], [15]. They stated that a function 𝑓 of 𝐼
arguments can be rewritten as a nested call to 𝐼 functions of each 1 argument:

𝑓 = 𝜆𝑥1. . . 𝑥𝑛. 𝐷𝑥𝑝𝑎 = 𝜆𝑥1. . . 𝜆𝑥𝑟 … 𝜆𝑥𝑛. 𝐷𝑥𝑝𝑎 for 𝐼 ≤ 𝑎

The latter has two important technical implications, both of which are presented using
concrete examples in 2.2:

 Partial function definitions: It is possible to apply 𝑓 to 𝑎 arguments, with
1 ≤ 𝑎 < 𝐼. The result is a partial function of 𝑓, to which the remaining
1 ≤ 𝑎′ ≤ (𝐼 − 𝑎) arguments can be later applied. For example, a simple addition
can be performed in two steps:

o Create the curried form of 𝜆𝑎𝐷𝑐. (𝑎 + 𝐷 + 𝑐) ∶ 𝜆𝑎𝜆𝐷𝜆𝑐. (𝑎 + 𝐷 + 𝑐)
o Apply only two input arguments to it: 𝐼𝐷𝑚𝑝 = (𝜆𝐷𝜆𝑐. (𝑎 + 𝐷 + 𝑐) 2 3)
o Apply the last input argument to 𝐼𝐷𝑚𝑝: (𝜆𝑎 (𝑎 + 2 + 3) 4)
o The result is 9

 Function arguments currying: Following the same rules, the formal notation of a
function definition can be revisited to:

𝑓(𝑥1 … 𝑥𝑛) → 𝐷𝑥𝑝𝑎 == 𝑓(𝑥1)(𝑥2)(…)(𝑥𝑛) → 𝐷𝑥𝑝𝑎

 High-Order functions: Each of the curried 𝜆𝑟 functions for 𝑎 < 𝐼 is a binder for
the 𝑥𝑟 variable, and takes as body the next 𝜆𝑟+1 function to be applied. A
function which takes another function as input argument is called a High-Order
function.

The first clear statement that posed Functional Programming as a hierarchy of
function composition, in opposition to imperative programming, was made in 1977 by John
Backus in “Can programming be liberated from the von Neumann style?: a functional style
and its algebra of programs” [16], although the very first language that was inspired from λ-
calculus is LISP [17], first released in 1958 for the IBM 704 (one of the world’s first language
together with Fortran).

LISP influenced many programming languages, and is itself at the origin of various
forked languages, which sometimes remerged over time. The most notable and still active
ones are Common LISP [18] (CLISP, ANSI specification in 1994), Scheme [19] (1975) and
Clojure [20] (2007). As we will see later, LISP base concept also inspired TCL [21], presented
in 3.1. Other languages inspired from functional concepts are quite popular and still active
although less visible to the masses, like Haskell [22] (~1990) or Erlang [23] (~1986), the most
recent one being Scala [24](2004), presented in 2.2.

Uni. Heidelberg - LS Rechnerarchitektur | Functional programing and domain specific languages 13

2.1.2.1 An example in CLISP

To give a glimpse on functional programming style, we will reproduce the example of
Figure 2-5 using the Common LISP language. We thus need to adapt our source code to
define the composition of functions that describes the computation:

 Formulate the computation function (𝑎 + 𝐷) ∗ 𝑏 in code. LISP uses a parenthesized
polish prefix notation, which means that operators precede operands. In our case, the
operators are + and ∗ , with operands 𝑎 𝐷 𝑐 , thus (+𝑎 𝐷) for the addition and
(∗ 𝑎𝐷𝑎𝐷𝐷𝐼𝐷𝑓𝑎𝑏𝑏𝑖𝐼𝑖𝐷𝐼 𝑏) for the multiplication. Composition precedence is achieved
by parenthesizing:

 In pure functional programming style, there is no state. However, if we want to use

variables in our equation, we can do so:
1. First replace constants by variables

2. Compose the function with the let function, which binds variables to constant

values when required

Illustrating the concept of lambda function in CLISP is also very easy, as it is natively
supported. We can rewrite our example in the following way:

1. Bind the computation formula to a function definition: (𝑥,𝑏, 𝑧) → (𝑥 + 𝑏) ∗ 𝑧

2. Apply the function to a set of input parameters called a, b and d

Figure 2-6 Chronology of a few functional programming languages

1 (* (+ 2 2) 4)

1 (* (+ a b) d)

1 (let
2 ((a 2) (b 2) (d 4))
3
4 (* (+ a b) d)
5)

1 (lambda (x y z) (* (+ x y) z))

1 ((lambda (x y z) (* (+ x y) z)) a b d)

14 Functional programing and domain specific languages | Uni. Heidelberg - LS Rechnerarchitektur

3. Compose the lambda with the let function, which binds variables to values to have a
state to work on. Here a is set to 2, b to 4 and d to 8.

4. The result of the let call is thus the result of the lambda applied to 2, 4 and 8, so 48.

2.1.2.2 Recursive function call

Recursive function call is a classical concept for all kind of programming style, and is a
base building block for functional programming. The factorial function, a typical illustration
example, is easy to write both using functional recursive calls and imperative style:

• Recursive decomposition of factorial: 𝑥! → (𝑥 − 1)! ∗ 𝑥
• Sequential decomposition of factorial: 𝑥! → 1 ∗ … ∗ (𝑥 − 𝐼) ∗ … ∗ 𝑥 ; 1 < 𝐼 < 𝑥

Recursive versions in LISP and C are presented in Figure 2-7, as well as imperative style C
implementation using a loop (sequential decomposition)

Figure 2-7 Functional and imperative style factorial

1 (let
2 ((a 2) (b 4) (d 8))
3
4 ((lambda (x y z) (* (+ x y) z)) a b d)
5
6)

1 (defun fact (x)
2 (if (<= x 1)
3 1
4 (* x (fact (- x 1)))
5)
6)

CLISP implementation

1 int fact(int x) {
2 if (x<=1) {
3 return 1;
4 } else {
5 return x * fact(x-1);
6 }
7 }

C implementation

1 int result = 1;
2 int i = 1;
3 int x = 12
4 for(i; i<=x;i++) {
5 result = result * i;
6 }

C implementation

Functional style Imperative style

Uni. Heidelberg - LS Rechnerarchitektur | Functional programing and domain specific languages 15

2.1.2.3 List/Elements Array processing

Collections processing is a classical example of how functional programming can be
used to write code in a different way. It is indeed very common to work on collection of data
in order to find elements matching specific criterions, extract parameters (in case of
collections of structured data) etc…. To take a simple example, given a list of numbers, we
would like to extract the subset of the even values, and represent them as strings. We define
two high-order functions to perform these tasks:

1. Filter: returns the elements of a list, for which the 𝜆 function applied to them
returned true:

𝑓(𝜆𝑥. 𝐷𝑥𝑝𝑎 {𝑏1 …𝑏𝑛})
𝑦𝑖𝑒𝑙𝑑𝑠
�⎯⎯⎯� {𝑏1′ …𝑏𝑟′}; 𝑎 ≤ 𝐼 𝑓𝐷𝑎 𝐷𝑎𝑐ℎ (𝜆𝑥. 𝐷𝑥𝑝𝑎 𝑏𝑣) == 𝐼𝑎𝐷𝐷

2. Map: returns a list, whose each element is the result of applying a 𝜆 function to the

input list:

𝑓(𝜆𝑥. 𝐷𝑥𝑝𝑎, {𝑏1 … 𝑏𝑣 … 𝑏𝑛})
𝑦𝑖𝑒𝑙𝑑𝑠
�⎯⎯⎯� {𝑏1′ … 𝑏𝑣′ … 𝑏𝑛′ }; ∀𝑣 𝑏𝑣′ = (𝜆𝑥. 𝐷𝑥𝑝𝑎 𝑏𝑣)

In imperative programming style, the control flow would have to be implemented per hand
as in Figure 2-8, while in functional style, only the composition of functions matters (Figure
2-9):

∀ 𝑥 = {𝑏1 …𝑏𝑣 … 𝑏𝑛} ;𝑓(𝑥)
𝑦𝑖𝑒𝑙𝑑𝑠
�⎯⎯⎯�𝑚𝑎𝑝(𝑖𝐼𝐼𝑇𝐷𝑆𝐼𝑎𝑖𝐼𝑎,𝑓𝑖𝐷𝐼𝐷𝑎(𝑖𝑎𝑁𝑁𝑣𝐷𝐼, 𝑥))

Figure 2-8 List filter and map imperative view Figure 2-9 List filter and map functional view

A data-flow oriented representation of this composition can be achieved with an Object-
Oriented programming interface. A concrete example is shown in 2.2, and refines the
previous formula as:

∀ 𝑥 = 𝐿𝑖𝑎𝐼 {𝑏1 …𝑏𝑣 …𝑏𝑛);𝑓(𝑥)
𝑦𝑖𝑒𝑙𝑑𝑠
�⎯⎯⎯� 𝑥.𝑓𝑖𝐷𝐼𝐷𝑎(𝑖𝑎𝑁𝑁𝑣𝐷𝐼).𝑚𝑎𝑝(𝑖𝐼𝐼𝑇𝐷𝑆𝐼𝑎𝑖𝐼𝑎)

16 Functional programing and domain specific languages | Uni. Heidelberg - LS Rechnerarchitektur

2.1.3 Discussion

As we have just seen, functional programming abstraction level is very interesting, as
it allows the user to write the solution to a particular problem the way it should be described,
instead of having to go down specifying the implementation’s control flow. However, wide
adoption of pure functional programming has not already happened for various reasons:

 The control flow is hidden

The natural way to create a software still consists in defining the various features it
has to offer, and how they relate to each other. This orchestration requires a minimal
state management. Sometimes computations are also very complex, and need an
explicit state management to stay understandable by the programmer himself, but
also by other human beings. Control flow and computations cannot completely be
hidden from each other.

For example, the language Erlang tried to solve this issue by proposing an
implementation of an “Actors” model, where some Actor objects exchange messages
to trigger reactions [25].

 Performance

Functional Programming basically relies on stack execution, as it proceeds by
reducing a function tree. Languages like LISP additionally featured paradigms like
runtime type checking, which requires an overhead to check function calls arguments
before the actual computation. In early computer science days the hardware was
slow and expensive, and this lead to requiring the development of machines
dedicated to functional languages, like the LISP machine [26].
For this reason, most programmers desired, or had to keep control of the execution
flow of their software to optimise performances, and stick to imperative languages
like C. Moreover, the concurrent standard Von Neumann architectures became fast

Figure 2-10 "Basic modus of operation of all computational models" [13] p.75

Uni. Heidelberg - LS Rechnerarchitektur | Functional programing and domain specific languages 17

and cheap, and allowed running LISP programs even faster than dedicated hardware.

 Syntax

A strength of imperative style programming is still
that reading the code provides understanding of the
direct execution flow. In functional style, the result is
provided by the composition of functions, which
makes it more difficult to understand if the code is
large, even if the formal definition is more powerful.

Moreover, the syntax definition is often a challenge
for most users. Dialects of LISP are very
uncomfortable to read due to the prefix notation. So
stated Alan Kay in his Ph.D. Thesis “programs written
in them look like King Burniburiach’s letter to the Sumerians done in Babylonian
cuneiform” [27]

To summarize, computation algorithms are better expressed in functional style,
which in turn is less adapted to architecture definition and orchestration in larger designs. In
facts, strict and efficient software design always tries to avoid state management and side
effects at the lowest levels, to maximize code stability and reusability. Over time though,
some imperative languages started improving their compilers to support functional style
constructs. A lot of developers are indeed already applying functional concepts to their
imperative code.

A trend can actually be seen in merging of imperative and functional styles, where
functional features are used to implement elegant abstraction to problem statements, while
imperative state management remains the glue binding the application world together
(Figure 2-12).

Figure 2-11 Letter from Burniburiach to
Amenhotep IV [66]

18 Functional programing and domain specific languages | Uni. Heidelberg - LS Rechnerarchitektur

Among the most popular languages following this path, we can mention:

 Python [28], which is very popular, although the functional features are limited and
not very attractive as they were added on the existing language definition

 Groovy [29] has a good visibility, it runs on the Java virtual machine and was designed
from ground up with functional features in mind.

 Even some newer languages, although not designed with functional programming in
mind, naturally offer some features. An example of which is the experimental Rust
language from the Mozilla foundation (it still may “eat your laundry” according to the
official website) [30].

The most visible one over the past few years though is Scala, which we are going to
use in section 2.2 to present some important functional programming paradigms applied to
an imperative-looking language.

Figure 2-12 Functional islands in an imperative style ocean

Uni. Heidelberg - LS Rechnerarchitektur | Functional programing and domain specific languages 19

2.2 Merging styles: The Scala programming language example

Created in 2001 (first released in 2004) at the Programming Methods Group [31] of
the École Polythechnique de Lausanne (Switzerland) by Martin Odersky’s Team, Scala stands
for “Scalable Language” [24]. It is a new programming language whose main design road is to
unite imperative with functional programming paradigms introduced by earlier languages
(LISP, Haskell, SmallTalk etc...).

The starting point of Scala’s design is based on three assumptions:

 The programmer writes too many keywords for obvious statements (so-called boiler-
plate code).

 Functional paradigms can be integrated in the language in an elegant way
 One can Import elegant concepts from existing languages and improve them, without

reinventing something totally new each time.

Scala features its own compiler which mainly targets the Java Virtual Machine (JVM)
for runtime, and allows taking advantage of the wide base of existing Java libraries and
projects. It can be discussed if Scala could be the next Java, but the latter follows its own
path, and the basic syntax of Scala can be repulsive for programmers used to state of the art
C/C++ or Java-like languages. In the next sections, we are going to present a few features of
Scala which proves the flexibility it brings to traditional imperative programming, without
requiring the user to think in an unthinkable way.

2.2.1 Type definition and Type Inference

2.2.1.1 Type Inference

In Scala, the data type definition of a term follows it’s name, unlike most usual
imperative languages (C/Java etc...).

𝑇𝑁𝑁𝑅𝑁𝑁 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ∶ 𝑇𝑌𝑃𝑁𝑁 = 𝐷𝑥𝑝𝑎

The 𝑇𝑁𝑁𝑅𝑁𝑁 can be:

 A variable : 𝑣𝑎𝑎 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ∶ 𝑇𝑌𝑃𝑁𝑁 = 𝐷𝑥𝑝𝑎
 A value (or constant) : 𝑣𝑎𝐷 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ∶ 𝑇𝑌𝑃𝑁𝑁 = 𝐷𝑥𝑝𝑎
 A function definition: def 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (𝑁𝑁𝑅𝐺𝑆) ∶ 𝑇𝑌𝑃𝑁𝑁 = 𝐷𝑥𝑝𝑎

A type checker typically checks the equivalence of type between the term specification, and
the expression: 𝐼𝑏𝑝𝐷(𝐷𝑥𝑝𝑎) === 𝑇𝑌𝑃𝑁𝑁. By adding a type inference mechanism, the 𝑇𝑌𝑃𝑁𝑁
specification can be dropped and delegated to the type of the expression: 𝐼𝑏𝑝𝐷(𝐷𝑥𝑝𝑎)
𝑦𝑖𝑒𝑙𝑑𝑠
�⎯⎯⎯� 𝑇𝑌𝑃𝑁𝑁. The common term specification becomes:

𝑇𝑁𝑁𝑅𝑁𝑁 𝐷𝑁𝑁𝐹 (∶ 𝑇𝑌𝑃𝑁𝑁)? = 𝐷𝑥𝑝𝑎

20 Functional programing and domain specific languages | Uni. Heidelberg - LS Rechnerarchitektur

A few concrete examples for simple numerical data types are presented below (simply run in
the Scala interpreter):

2.2.1.2 Implicits

The type inference mechanism in Scala is not static, as presented in Figure 2-13, and
can be enriched by user provided conversion functions, called implicits, which simply take an
input of type A to produce an output of type B (i.e. specifies an 𝑁𝑁 → 𝐵 conversion) . This
feature is of great use to create flexible language interfaces, although it can sometimes lead
to bad designs if too generic and possibly clashing implicit conversion functions are defined.

To illustrate this mechanism, let’s consider the data types Integer and Float. The
𝐼𝐼𝐼𝐷𝑎𝐷𝑎 → 𝐹𝐷𝐷𝑎𝐼 conversion is trivial, as an Integer can be represented as a floating point
number with a mantis set to 0. The other way round is not possible, and requires an explicit
rounding. To simplify an application where a rounding to the lowest integer would be the
rule, we could define an implicit. Figure 2-14 provides the illustration, with an invalid Double
to Integer assignment on the left-hand side made valid on the right-hand side by the implicit
definition.

1 scala> var a : Int = 42
 2 a: Int = 42
 3
 4 scala> var a = 42
 5 a: Int = 42
 6
 7 scala> var b = 42L
 8 b: Long = 42
 9
10 scala> var c = 42.0
11 c: Double = 42.0

Figure 2-13 Type inference with dynamic type conversion

Uni. Heidelberg - LS Rechnerarchitektur | Functional programing and domain specific languages 21

Figure 2-14 Double-to-Int implicit type inferring example

But if another application part or a library had decided to provide its own inference
function, we might run into ambiguity. In the following example, the type inference
mechanism cannot decide if the Int to Double conversion should be performed by the
doubleToInt method, or the newly added doubleToInt.

Figure 2-15 Double to Int ambiguous erroneous implicit type inferring

1 scala> var a = 42
 2 a: Int = 42
 3
 4 scala> var b = 30.5
 5 b: Double = 30.5
 6
 7 scala> a = b
 8 <console>:9: error:…
 9 found : Double
10 required: Int
11 a = b
12 ^

1 scala> implicit def doubleToInt(x:Double) = x.toInt
2 doubleToInt: (x: Double)Int

𝐷𝐷𝐷𝐷𝐷𝐷 → 𝐼𝐼𝐼 implicit

1 scala> var a = 42
2 a: Int = 42
3
4 scala> var b = 30.5
5 b: Double = 30.5
6
7 scala> a = b
8 a: Int = 30

Type
Inference

1 scala> implicit def doubleToInt2(x:Double) = x.toInt
 2 doubleToInt2: (x: Double)Int
 3
 4 scala> a = b
 5 <console>:11: error: type mismatch;
 6 found : Double
 7 required: Int
 8 implicit conversions are not applicable because they are
ambiguous:
 9 both method doubleToInt of type (x: Double)Int
10 and method doubleToInt2 of type (x: Double)Int
11 are possible conversion functions from Double to Int
12 a = b

Additional Implicit

Ambiguity

22 Functional programing and domain specific languages | Uni. Heidelberg - LS Rechnerarchitektur

2.2.2 Closures and high-order functions

2.2.2.1 Anonymous functions

Functions are in functional programming “first class citizens”. They can be declared
anonymously, as λ-expressions (i.e. inline without the keyword), and be considered as def
simple values. The Scala syntax follows the function definition presented in 2.1.2 (→ is
replaced by ⇒):

𝑓 = { (𝑎𝑎𝑎𝑎) ⇒ 𝐷𝑥𝑝𝑎}

The following example creates a λ expression which multiplies two integers:

2.2.2.2 Closures

Closures are a key construct in functional programming. A good and understandable
definition can be given based on [32] and [33]:

Definition 2.1 A closure is a λ-expression associated with an environment, which may
contain occurrences of variables bound to the environment, not to the λ binder (i.e.
the input arguments)

This next example defines a λ-expression which multiplies an integer by a coefficient defined
in the environment surrounding the closure (by is not a multiply input parameter):

1 var multiply = {
2 (a:Int,by:Int) => a*by
3 }
4 multiply(2,2)

1 var by = 2
2 var multiply = {
3 a:Int => a*by
4 }
5 multiply(2)

 1 scala> var by = 2
 2 by: Int = 2
 3
 4 scala> var multiply = {
 5 | a:Int => a*by
 6 | }
 7 multiply: Int => Int = <function1>
 8
 9 scala> multiply(2)
10 res2: Int = 4

1 scala> var multiply = {
2 | (a:Int,by:Int) => a*by
3 | }
4 multiply: (Int, Int) => Int = <function1>
5
6 scala> multiply(2,2)
7 res1: Int = 4

Formal λ specification

Uni. Heidelberg - LS Rechnerarchitektur | Functional programing and domain specific languages 23

2.2.2.3 High-order functions

Definition 2.2 A high order function is a function which takes a λ-expression (i.e.
another function) as one of its input arguments, or returns one as result.

A very recurrent example is encountered when processing collection of elements. In
Figure 2-16 we implemented the list processing example from 2.1.2.3.

Figure 2-16 List filter and map in Scala

1 scala> List(1,2,3,4).filter(x => x%2==0).map(x => x.toString)
2 res3: List[String] = List(2, 4)

1 List(1,2,3,4).filter(x => x%2==0).map(x => x.toString)

λ-expressions

Run in interpreter

24 Functional programing and domain specific languages | Uni. Heidelberg - LS Rechnerarchitektur

2.2.3 Currying and Partial Functions

Currying is implemented in Scala and allows splitting the input arguments of a function
definition to take the form of nested call, as presented in 2.1.2.

Figure 2-17 A multiply function written in curried form

Figure 2-17 presents the previous multiply function definition example rewritten in a
curried form. The other consequence of currying that was mentioned earlier is that it allows
using partial function calls:

However a return on experience showed that partial calls are rarely used, but can be
very convenient to raise the abstraction level by making a curried function call with default
values for the first arguments, while hiding them from the final call. One could write a
multiply by two function, which would be a partial call to multiply with 𝑎 = 2, waiting for the
final call to have 𝐷 bound. As can be seen in figure, the multiply by 2 function is not a new
definition, but a partial from the generic multiply definition.

Figure 2-18 Partial function usage to introduce an abstraction level

1 scala> var p = multiply(2)_
2 p: Int => Int = <function1>
3
4 scala> p(4)
5 res6: Int = 8

1 scala> def multiplyBy2 = multiply(2)_
2 mby2: Int => Int
3
4 scala> multiplyBy2(4)
5 res13: Int = 8

Curried Call Multiple arguments call forbidden

1 scala> multiply(2,2)
2 <console>:11: error: too many
arguments for method multiply: (a:
Int)(b: Int)Int
3 multiply(2,2)
4 ^

1 scala> multiply(2)(2)
2 res5: Int = 4

1 def multiply(a:Int)(b:Int) = a*b

def 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(arg1 … arg𝐼) → def𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(arg1) … (arg𝐼)

(𝑥) → 2 ∗ 𝑥 𝐷𝑎 𝜆. 𝑥. 2 ∗ 𝑥
P is now a partial λ of multiply:

(𝜆. 𝑥. 2 ∗ 𝑥 4)
Apply p to 4

Uni. Heidelberg - LS Rechnerarchitektur | Functional programing and domain specific languages 25

2.2.4 Discussion

Scala being a young language, some critics have been raised against it. One of the
most prominent, which can be sensed after reading this section, is that the compiler gets
assigned a lot of tasks, by trying to support many features. Type checking and inference slows
down compilation and can lead to confusions, real generic runtime language reflection is a
pain and not clearly specified (users have to use the standard Java introspection instead) and
so on…

On the other hand, the language design choices are clearly targeted at giving the
developer the tools he needs to use and not defining constructs which reduces errors
possibilities by constraint. More pressure is put on the designer to think about clear and
correct way to write code, rather than solving problems using a syntax not adapted and not
adaptable. The science in Scala resides in finding the sweet spot between imperative flow,
functional constructs and code clarity (which impacts robustness).

A Typical example for this is the type inference mechanism. Not specifying explicit
types in the source code makes debugging more difficult, but Scala doesn’t force anyone to
not specify the type. That kind of decision is given back to the programmer, who needs to
think for example:

 Is the type obvious?
o Yes: Let type inference work
o No: Specify the type

 Should I make the type obvious?
o Yes: Specify the type, and provide type inference specification for the end-

user
o No: Specify the type

This kind of options is not thinkable in Java for example, where the type must be explicit and
is non flexible.

Figure 2-19 Finding the code quality sweet-spot in Scala

26 Functional programing and domain specific languages | Uni. Heidelberg - LS Rechnerarchitektur

During this thesis, some projects have been developed using Scala, on of them being
the XML binding library presented in 4.4. Many lines of code have been written and we found
true that syntax lightening, architecture design features (traits, object etc…) and functional
paradigms (closure, type inference) brings an important speed-up in implementation phases,
giving more time for unit testing, consequently improving applications stability.

To conclude, we can state that functional programming presents tremendous
improvements for designer choices, if correctly flavoured in a traditional language. However,
the way functions are composed with each other, especially in the case of closures for data
flow programming, requires a change in the way we think algorithms. Developers need an
adaptation period, but experience also shows that the benefits gained from using Scala
strictly as an imperative language are quite limited. It only brings the language closer to
Dynamic Languages because of its light syntax, while lacking their flexibility.

In the next two following sections, we are going to explore two techniques for
abstract design language: Domain Specific Language and Embedded Domain Specific
Language. Scala will be used as support for implementation examples in both cases.

Uni. Heidelberg - LS Rechnerarchitektur | Functional programing and domain specific languages 27

2.3 Domain Specific Language design: LL and LR-based parsing

n our quest to optimizing software development methodologies for domain
specific applications, we need to present some parsing algorithms which are often
used to create languages. Programing languages usually try to follow a limited set

of constructs, which are semantically different enough from each other to make parsing by
compilers feasible and possibly with a complexity approaching 𝑂(𝐼). These languages thus
usually are context-free languages in the Chomsky-Hierarchy [34].

Context-free languages are defined by grammars, which describe the allowed words
for a language. A grammar is written as a set of rules, which a parser uses to determine if a
character input is part of the defined language or not. Besides accepting or rejecting an input,
parsers are used to produce an output, which can be for example an abstract representation
of the input, or a transformation. The output creation is driven by actions run when
encountering specific language constructs.

Analysing a very simple example is the best way to understand the way parsers work.
We present in Figure 2-20 a C language if construct, which is parsed and transformed to
generate an in-memory tree representation of the input, called an Abstract Syntax Tree (AST).
This AST representation of the text input can then be processed by other software
components like compilers, optimisers etc…

Figure 2-20 A simple C “if” parsing rewritten in an AST form

How can we parse such an input?

We are going to briefly focus here on LL(k) and LR(k) parsers [35], which are two kind
of algorithms designed for context-free languages. They work by reading an input from the
left to the right, with a k number of look-ahead characters in their buffer. A language is said
to be deterministic LL(k) /LR(k) defined if it exists an LL(k) /LR(k) parser that can recognises it
without backtracking, that is to say, without having to rewind the stream to try another
parsing path. LL(k) /LR(k) both implement two different approaches:

 An LR parser produces a right-most derivation, meaning that the terminal grammar
rules are first matched then reduced to find the top most rule.

I

1 if (x>1) {
2
3 }

28 Functional programing and domain specific languages | Uni. Heidelberg - LS Rechnerarchitektur

 An LL parser produces a left-most derivation, meaning that the top level grammar
rule to follow is predicted based on the input look-ahead, which is then compared to
the expected following rules.

LR(k) parsers performances are linear in time, and generically support more
languages than LL(k) ones (as there is no prediction issue), and are more prone to error
detection because they always wait for a grammar pattern to be fully recognised before
“pushing the result up”. However, they are more difficult to write than LL(k) parsers, and
their complexity rises in front of languages which would need to rely on look-ahead and
prediction to decide which rule path must be followed.

LL and LR applied to Domain specific languages

Fortunately, LL(k) and LR(k) parsers can be generated from a textual representation
of a grammar in a Backus Normal Form (BNF, first introduced in [36]). Creating a new
language can thus be as simple as writing a definition grammar and generate the parsing
code. Two of the most famous parser generators tools are YACC+Lex for LR parsers and
ANTLR for LL parsers, the later of which we are going to present. The Scala language also
features an interesting simple LL(k) API which allows to represent a grammar using a
composition of functions and objects, without BNF notation and generation of parser code.

To better understand how parser generators work, it is interesting to note that
parsers work on a single character input basis, while languages usually present lexical
elements, or tokens, which are composed of multiple characters (like if in our example). It is
thus efficient to pre-parse a character input in order to represent those multiple characters
tokens as single “virtual” characters.

As presented in Figure 2-21, a parsing chain thus normally first converts the textual
representation of an input stream to a “tokenized” stream, using a lexical analyser and a
token table. This stream is then fed to the parser which only sees single “characters”.

Figure 2-21 Tokenizer output to parser for "if" characters

Uni. Heidelberg - LS Rechnerarchitektur | Functional programing and domain specific languages 29

2.3.1 LL Parsing in Java: ANTLR

ANTLR is a very popular LL(k) lexical analyser and parser generator [37][38] targeted
at the Java Programming Language (some backend exist for other languages like C/C++ but
they are not supported from ground up). It introduces the concept of LL(*) parsers, for which
the number of look-ahead characters k is not fixed. Additionally, to help tackle the
weaknesses of LL parsers against left recursive languages and context-sensitive constructs, it
introduces syntax and semantic predicates, which allow the user to define rules whose
matching results drive the choice of the main grammar rule path to be followed.

Context sensitivity and left recursion issues can become quite cumbersome to solve,
but ANTLR is backed by a powerful set of tools to analyse and debug a language. To illustrate
the usage of ANTLR, we wrote a small grammar supporting the if construct presented earlier.
It has been improved to support recursive condition expressions. As showed in Figure 2-22,
the condition for if can be represented as 𝑂𝑃𝑁𝑁𝑅𝑁𝑁𝑁𝑁𝐷 𝑂𝑃𝑁𝑁𝑅𝑁𝑁𝑇𝑂𝑅 𝑂𝑃𝑁𝑁𝑅𝑁𝑁𝑁𝑁𝐷. The
𝑂𝑃𝑁𝑁𝑅𝑁𝑁𝑇𝑂𝑅 element is defined by the language, and will be for example an arithmetic
operator like +, &, < or >. The 𝑂𝑃𝑁𝑁𝑅𝑁𝑁𝑁𝑁𝐷 can in turn itself be an
𝑂𝑃𝑁𝑁𝑅𝑁𝑁𝑁𝑁𝐷 𝑂𝑃𝑁𝑁𝑅𝑁𝑁𝑇𝑂𝑅 𝑂𝑃𝑁𝑁𝑅𝑁𝑁𝑁𝑁𝐷 sub-expression, until it is only a sole identifier, like a
variable name or a constant.

Figure 2-22 Simple If definition with recursive condition

The parsing tree produced against this input by the grammar definition, using the
ANTLRWorks 2 debugging environment is show in Figure 2-23, while Figure 2-24 presents:

 The matching grammar in BNF form, containing parser rules, lexical analyser
definitions, and a Java code action run at the end of the IF matching rule

 Diagram views of the if and args rules, created in ANTLRWorks.

1 if ((x > 1) & (x < 10)) {
2
3 }

Figure 2-23 If grammar parse tree for a given input

30 Functional programing and domain specific languages | Uni. Heidelberg - LS Rechnerarchitektur

Figure 2-24 ANTLR Grammar with syntax diagrams

The lexical analyser rules, like IF, convert sub-parts of the text input to single-values
as presented in Figure 2-21. The args definition is the recursive a parser rule, while the ifr rule
contains a Java code action between curly braces, which is executed after a completed
match.

ANTLR proves to be easy to use and its good tooling support makes it a good choice
to develop languages in a short time. However, it mostly limited to the Java programming
language environment, although some generators exist for other languages, their support
and quality is not guaranteed.

1 grammar ifgrammar;
 2
 3 // Parser
 4 //------------
 5 ifr: IF args '{' '}' elser? {
 6
 7 // Action
 8 System.out.println("Found If");
 9
10 };
11
12 elser: ELSE '{' '}';
13
14 args: ('(' args OP args ')') | ID;
15
16 // LEXICAL ANALYSER
17 //-------------
18 IF: 'if';
19 ELSE: 'else';
20 LP: '(';
21 RP: ')';
22 LB: '{';
23 RB: '}';
24 OP: '>' | '<' | '&';
25 ID: [a-zA-Z0-9]+;
26
27 // Ignore whitespaces
28 WS : [\n\r\t] -> channel(HIDDEN);

Action

Lexical Tokens
Can be regular expressions and

include alternatives.

Recursion

Uni. Heidelberg - LS Rechnerarchitektur | Functional programing and domain specific languages 31

2.3.2 Parsing in Scala

Both previously presented ANTLR and YACC+Lex generate a parser source code for a
grammar described in BNF form. Taking advantage of its advanced type inferring features
(see 2.2.1), the Scala language provides a parser library in its standard distribution[39]. It is
not a generator-based parser, which means that the user instantiates a set of generic objects
which basically integrate and repeat the logic a parser would generate for each a new input
parsing process.

This strategy allows embedding parser code right where it belongs in the sources,
with no additional tool-chain, but lacks the separate language design stage, and no specific
debugging environment is available at the moment. Additionally, the Scala parsers are not
like ANTLR or YACC LR(k) /LL(*) designs, but simple recursive top-down parsers which employ
backtracking (stream rewind) for alternative decisions. For example, if a rule is written:
𝑆 → 𝑃| 𝑄 , matching 𝑄 will first require to fail matching 𝑃, then rewind and match 𝑄.

To show how this performs, the following code example implements the args rule from
previous ANTLR example using a Scala parser:

We can see in this case, that the Lexical tokens (> and & for example) and the rules
(argsr) are chained directly using Scala function operators (~ or |) . For example, some
implicit type inferring rules are defined in the Parser library to convert the String data types
(ex: “(“) to Parser objects which recognise the converted string. Using this mechanism, the
developer can ignore the actual parsing class hierarchy, and focus on the rules content.

The Scala parsing API is well adapted for applications requiring simple parsing with
flexible integration, and with little performance requirements. Those criterions should match
a lot of use cases, but as we will see in 2.4, parsers are quite often not really required for
language development in Scala, because the language itself is flexible enough to avoid
requiring DSL parsers.

1 var argsr : Parser[_] =
2
3 // (arg OP arg) | ID
4 "(" ~ argsr ~ (">" | "&") ~ argsr ~ ")" | """[a-zA-Z0-9]+""".r
5
6 parseAll(argsr, "(x > 1) & (x < 10) ")

32 Functional programing and domain specific languages | Uni. Heidelberg - LS Rechnerarchitektur

2.3.3 Discussion

Domain Specific Languages basically follow the principle of standard programming
languages design, which involves defining a grammar and an associated parser to produce an
output. Instead of producing runnable applications, DSLs typically are parsed within an
existing one, where the embedded actions are used for control and configuration purpose, or
to produce data structures to be used later by the runtime.

However, a few criterions need to be analysed when determining is a DSL should be
considered for a precise application:

 Language design: language grammars are not so trivial to design, because when
using a DSL to raise the semantic abstraction level of the language, the user rapidly
falls in context-sensitivity and recursion issues which can lead to long parsing times,
high development costs, and moreover, the testing complexity raises rapidly with the
number of allowed language constructs.

 Supported Runtime: In the end, as we have seen with YACC+Lex (for C), ANTLR (for
Java) and Scala, the parser generators tend to be adapted to one underlying
language, making the choice of the parsing technology dependent on the chosen
application language.

 Performance: Depending on the size and complexity of the typical input to be parsed,
YACC+Lex/ANLTR or Scala behave differently. When Parsing small sized inputs, the
performances are comparable, but as the input data grows, a linear LR parser
performs better, assuming it can parse the language. A less optimised Scala parser
will behave badly for large inputs, but similarly to generated parsers for small inputs.
The performance criterion must also be compared to the context of usage. A DSL
driving very long running processes in the application runtime won’t require to be
very performant for example, and the first-choice will be driven by the underlying
runtime requirement (Native application, Java-based etc…) and the maintenance cost
function.

In the next section, an alternative way to create domain specific languages, called
Embedded Domain Specific Language will be presented. It differentiates from traditional
parsing-based language design by using concepts from Functional Programming languages, to
reach a syntax quality close to DSLs without parsers.

Uni. Heidelberg - LS Rechnerarchitektur | Functional programing and domain specific languages 33

2.4 Embedded Domain Specific Language (EDSL)

xploration of Functional Programming and language parsing technologies gives us so
far knowledge about different ways to structure traditional code, and ways to define
new language semantics. Still, most of the flexibility we want to reach using Domain

Specific Language and Functional Programming revolves around hierarchy of problems (to
complete control flow based or imperative programming, which focuses on sequence), and
usually an existing application exists and constraints the technology choice for DSL
development.

Embedded Domain Specific Languages, as presented by Paul Hudak in [40], serve the
same purpose as traditional DSL design, but instead of parsing a language input on which
reactions will trigger a behaviour in the host application, the process is reversed by defining
the behaviour of the created language using functions, and try to allow valid function calls in
the host language which will look like a new language. This approach presents one main
advantage and one main drawback:

 Be embedded in the host language: The new definitions only need to focus on the
core aspects of the language. Traditional control structures, for example, are already
present and the user can mix the language elements with other libraries.

 Be embedded in the host language: Some limitations in the allowed syntax will be
required to fit the host language, and the language usage validity mostly has to be
proven by the implementation, as no parser can be configure to forbid specific
semantic combinations.

In our sense, the main criterions we will retain for EDSL design should lead to reaching a
Software development cost as presented in Figure 2-25 (base graphic from [40]):

 Ease of development: (𝐶2 − 𝐶1) → 0, better maintainability in time than DSL
methodology

 Clear Syntax
 Hierarchy mirroring

E

Figure 2-25 Domain specific language cost gain [40], with EDSL projection

34 Functional programing and domain specific languages | Uni. Heidelberg - LS Rechnerarchitektur

To illustrate our purpose, we are going to analyse a simple concrete example of how
to build a DSL to create a Graphical User Interface (GUI), and then analyse the creation of an
EDSL extension to the Scala language.

 GUIs are typically component graphs with actions (like button clicks), in other words:
A component hierarchy with function composition. Figure 2-26 shows a window with two
buttons which we want to be able to design efficiently. This first step is to define in clear text
what we see:

 Alternative 1 : The buttons placement is dynamic
o A window

 A Content Panel
• A button
• Another button
• The panel is laid out using an Horizontal Box algorithm

 Alternative 2: The placement of the buttons is static
o A window

 An horizontal box
• A button
• Another Button

From this perspective, we can try to write the two alternatives down using a new language:

1 window("EDSL Window") {
 2
 3 panel {
 4
 5 button("Click Me!") {
 6 println("Hello World!")
 7 }
 8 button("Click Me!")
 9
10 layout = hbox
11
12 }
13
14 }

1 window("EDSL Window") {
 2
 3 hbox {
 4
 5 button("Click Me!") {
 6 println("Hello World!")
 7 }
 8 button("Click Me!")
 9 }
10 }

Alternative 1 Alternative 2

Figure 2-26 Window output of Designed DSL

Uni. Heidelberg - LS Rechnerarchitektur | Functional programing and domain specific languages 35

Using tools presented in 2.3, we could now write a grammar definition to parse the
input. However, some interesting issues can already be seen:

 The parser actions must build the hierarchy using a stack. The software complexity is
just hidden and moved to the parser maintainer.

 Some code is embedded for the buttons actions. This case is very problematic, as it
forces to define a programming syntax, or handle action nodes as simple text, and be
able to evaluate it dynamically. This is feasible, but poses the issue of context binding,
i.e. with which environment can the action code (button click) interact. Concretely,
before running the action code, the application would have to explicitly bind some
variables with which it can interact to modify the global application environment.

 Do the curly-braces-surrounded section after a button means “onClick”, or can it be
used to configure the button (colour, other kind of listeners etc…) ?

Those few issues illustrate the difficulty to design languages where the output has to
be flexible and context sensitive interpretation is required. The efforts to maintain a classical
DSL would be in this case for such a simple problem overwhelming. Can we from there on
find another path?

36 Functional programing and domain specific languages | Uni. Heidelberg - LS Rechnerarchitektur

2.4.1 Functional Programming for EDSL

Basically, under the light of [40] or [41] (a design applied to Scala) , we can review the
hierarchy of the Alternative 1 example as:

 A window
o A function to configure the window

 The window title is “EDSL Window”
 A panel

• A function to configure the panel
o A button
o Another button
o The panel is laid-out using an Horizontal Box

algorithm

Figure 2-27 Function + Configuration closure design pattern

In Figure 2-27 we can first recognise a typical λ -calculus pattern: Currying (see 2.2.3).
The function creates a Window and accepts another function as input, which will be window
applied to the new window for configuration.

In a second time, the presented example delegates the actual hierarchy creation to
the underlying runtime. Indeed, no explicit keyword or function call explicitly places the panel
in the window, and the buttons in the panel. This has to be done by maintaining the hierarchy
stack while creating the components, following this simple flow:

1. Create new component (the panel for example)
2. Stack
3. Execute the e configuration closure
4. De-stack

1 window {
 2
 3 panel {
 4
 5 button("Click Me!") {
 6 println("Hello World!")
 7 }
 8 button("Click Me!")
 9
10 layout = hbox
11
12 }
13
14 }

Configures window

Uni. Heidelberg - LS Rechnerarchitektur | Functional programing and domain specific languages 37

Is this always true?

Various options exist depending on the type of language that is used for
implementation. Basically, in the context of a compiled language, the code must be fully
consistent for the compiler to validate the function calls have a clear and existing reference.
This leads to two design cases:

• The hierarchy building is delegated to the runtime. This option we just described.
It has the main advantage of reducing the required explicit coding, but introduces
potential runtime errors.

• The hierarchy is created explicitly by appropriate function calls. This makes code
writing more difficult, but triggers clearer results, and better compile-time
validation.

This second option is illustrated by a concrete implementation example in Figure
2-28, where the hierarchy is constructed by calls to functions named “<=”. It is based on a
Scala library created to virtualise user interface creation in an appropriate programming
interface, enable faster development time, while delegating the real component creation to
the underlying GUI library (Java Swing or JavaFX for example). We can see that it is a bit more
expressive than the proposed versions so far, but answers all the presented issues.

Figure 2-28 Embedded DSL for a GUI applied to Scala (JavaFX runtime)

1 window("EDSL Window") {
 2 win =>
 3
 4
 5
 6 win <= panel {
 7 p =>
 8
 9 p <= button("Click Me!")
10
11 p <= button("Click Me!") {
12
13 b =>
14 b.onClick {
15 println(s"Hello World!")
16 }
17 }
18
19 p.layout = hbox
20 }
21
22 }.show

Configuration
closure for panel

Add panel to window

38 Functional programing and domain specific languages | Uni. Heidelberg - LS Rechnerarchitektur

On the contrary, when using a dynamic (or scripted) language, it is sometimes
possible to create a hybrid solution. The configuration closures would be interpreted when
encountered, and thus do not need to be compiled before being passed to the object where
it will be executed. In this case, the closure correctness must not be enforced at the level
where it is created, but at the level where it is executed. This allows a lighter syntax without
delegating any hierarchy building to a special runtime handler.

To outline the requirements of such a dynamic language design, let’s have a look at the
button creation in our example. The code would look like:

The formal software design requires:

 A Button Class with
o An onClick method

 The button function:
o Creates a Button instance
o Runs the closure in the context of (i.e. local to) the button instance

 The onClick method call is valid because it is then local to the
closure evaluation context.

 An important limitation is however to be highlighted in this case: it requires the
runtime to be able to capture the closure code and defer its execution into another run level.
This is not always possible depending on the underlying language.

1 button("Click Me!") {
2
3 onClick {
4 println(s"Hello World!")
5 }
6 }

Uni. Heidelberg - LS Rechnerarchitektur | Functional programing and domain specific languages 39

2.4.2 Discussion

This section illustrated the usage that can be made of functional programming high-
order functions and closures to embedded “domain-specific constructs” as part of a language.
This approach is, naturally, radically different from a pure Domain Specific Language
definition, as it constraints the newly defined abstraction level to a specific language.
However, benefitting from the host language features, evolutions, and potential community-
provided libraries is an advantage (by itself in terms of design cost) that greatly supersedes
the full flexibility of a traditional DSL.

A concrete example has been provided in this section using the Scala language, which
provides the adequate syntax and language features to implement an EDSL with style. This is
not true for all existing languages, and the more complex the syntax will become, the higher
the potential user’s acceptance level will rise.

Just like for all human languages, the acceptance criterion is usually overwhelming, as
most people will use a less powerful DSL, or even create a new one, because they won’t come
clear with a solution being too complex, or with a too steep learning curve, although more
powerful.

To sump, some language features can be tested when evaluating a language as
candidate for an EDSL:

 Functional Programming Features
o Closures
o High-Order Functions

 Closure definition
o Support for real lambda functions
o Syntax overhead of lambda definitions

 High-Order Functions
o Support for currying
o Syntax overhead for function passing if no currying is available

 Closure execution
o Compiled language: Explicit typing and context enforcement at compile

time
o Dynamic language: Runtime selectable execution context

This thesis’ applications mostly focuses on hardware software design flows
(Electronic Design Automation, EDA), for which the most widely spread language is TCL. In the
next chapter, we are going to show how we setup a set of programming design rules to be
able to create EDSL run in the TCL interpreter, with a very satisfactory semantic quality result.

40 Functional programing and domain specific languages | Uni. Heidelberg - LS Rechnerarchitektur

Uni. Heidelberg - LS Rechnerarchitektur | Embedded Domain Specific Language design in TCL 41

3 Embedded Domain Specific Language design in TCL

o far, we mostly focused on presenting some programming principles and technics
revolving around domain specific language design. An emphasis was brought on EDSL
programming’s advantages and drawbacks, with a concrete example using the Scala

language.

However, hardware software co-design environment are in their vast majority
supported by the TCL programming language, and the heterogeneity of the design flows, as
outlined in the introduction, makes the development of domain specific languages attractive.
Therefore, we tried to use the features of the TCL language to make the creation of EDSLs
possible.

TCL being a quite minimalistic language, it does not natively support some required
functional programming aspects like closures. In this chapter, we will thus introduce some
important features of the TCL interpreter, and use them to enable closure programming in
TCL scripts, and move-on to presenting an EDSL development methodology using object-
oriented (OO) libraries. Figure 3-1 illustrates this development path to be followed.

S

Figure 3-1 TCL to TCL-based EDSL development path

42 Embedded Domain Specific Language design in TCL | Uni. Heidelberg - LS Rechnerarchitektur

3.1 The TCL programming language

irst presented during the 1990 Winter USENIX conference by John K.
Ousterhout, the Tool Command Language (TCL [21] [42]) was created
with simplicity and flexibility in mind, to allow tool writers to offer

users a programming interface for customisation, without having to develop
a new language for each new application. For this reason, aside from the language syntax
definition, the TCL interpreter was made very easy to integrate in any software. Example 3-1
illustrates how to run a TCL script inside a traditional C application (using the latest version,
but this procedure is still valid after 24 years).

Creating C based commands callable from TCL is also easy, as can be seen in Example
3-2. This is probably the reason why it has been widely adopted by the Electronic Design
Automation (EDA) industry, which often relies on a programming interface (partly or totally)
for the user interface.

F

 1 #include <tcl.h>
 2
 3 int main () {
 4
 5 Tcl_Interp * interpreter = Tcl_CreateInterp();
 6
 7 Tcl_Eval(interpreter,"puts \"Hello World!\"");
 8
 9 return 0;
10 }

$ gcc EmbedExample.c -o EmbedExample -I /usr/include/tcl8.6 -ltcl8.6

$./EmbedExample

Hello World!

$./EmbedExample

Example 3-1 TCL Interpreter embedding

Figure 3-2 TCL logo

Uni. Heidelberg - LS Rechnerarchitektur | Embedded Domain Specific Language design in TCL 43

Inspired by LISP languages (LISP stands for LISt Processing), one notable concept of
TCL, which sometime makes it difficult to get along with during first encounters, is the
reduced number of programming concepts that drive the syntax:

 List definition:
o Whitespace separated arguments and content placed between are { }

lists (Example 3-3 line 1)
 Command replacement (or function call)

o Content placed between is replaced by the result of the command []
specified by the first word (Example 3-3 line 5)

 Variable definitions:
o Variables’ values can be retrieved using (Example 3-3 line 5) $

o Variables’ names (without) are used as references (Example 3-3 line 3) $

 1 #include <tcl.h>
 2
 3 // Command implementation
 4 int test_cmd(ClientData c,Tcl_Interp *i, int argc, const char *a[]) {
 5
 6 printf("Hello World!\n");
 7
 8 return 0;
 9 }
10
11 int main () {
12
13 Tcl_Interp * interpreter = Tcl_CreateInterp();
14
15 // Linking of "test_cmd" function, under "hello_command" name
16 Tcl_CreateCommand(interpreter, "hello_command", test_cmd, 0,NULL);
17
18 Tcl_Eval(interpreter,"hello_command");
19
20 return 0;
21 }

1 $ gcc LinkExample.c -o LinkExample -I /usr/include/tcl8.6 -ltcl8.6

2 $./LinkExample

3 Hello World!

4 $

Example 3-2 Command linking

44 Embedded Domain Specific Language design in TCL | Uni. Heidelberg - LS Rechnerarchitektur

To parse a script, the TCL interpreter thus simply reads the input, the first word on
the first line being the name of a command, gathers the forth coming input as a list, which is
then passed to the command implementation, if found in the command table. Although
inspired from LISP dialects, it did not preserve the polish prefix notation, which makes the
syntax still easy to read and avoids the readability issue mentioned in 2.1.3.

The remaining traditional imperative programming concepts, like function definition
(called) and control structures are provided by command implementations which can be proc
called from TCL code. As illustrated in Example 3-4, this leads to a great flexibility in the
command mapping (see 3.1.1 for details).

Like all modern scripting languages, TCL provides out of the box facilities for modular
programming, introspection and self evaluation. Some of those features which are relevant
for a good understanding of this thesis are detailed hereafter.

1 % set a {b c d}
2 b c d
3 % lappend a e
4 b c d e
5 % puts "List a has [llength $a] elements"
6 List a has 4 elements

Example 3-3 Basic syntax example (executed in tclsh interpreter)

1 namespace eval a {
 2
 3 ## An if needs a condition and a body to be executed
 4 proc if {condition body} {
 5 puts "Entered an if, with condition $condition"
 6 puts "Should we execute body: /$body/ ?"
 7 }
 8
 9 puts "An if may not be an if"
10 if {1==2} { puts "This is not reachable" }
11 }
Output:
1 #An if may not be an if
2 #Entered an if, with condition 1==2
3 #Should we execute body: / puts "This is not reachable" / ?

Example 3-4 Command overwritting in TCL

Uni. Heidelberg - LS Rechnerarchitektur | Embedded Domain Specific Language design in TCL 45

3.1.1 Namespaces and packages

Namespaces

The base concept and syntax for Namespaces (NS) resemble the one from C++. They
allow to group together a set of commands and variables under a common name. A glimpse
has already been given in Example 3-4, where a namespace called a was used to define a new
if procedure, which was then formally registered in the interpreter under the name: ::a::if.
Calling a command or variable defined under an NS follows a simple set of rules, which are
important to understand:

 Top NS: When some code runs under no specific namespace, it runs under the
context called top, whose namespace name is ::

 NS-Call: If the call contains the :: characters, the user is referencing a namespace.
 Absolute NS-Call: When performing an NS-Call starting with the :: characters, the

user has to pass the full NS name.

 Relative NS-Call: During an NS-Call, if the name does not start with the ::
characters, the namespace search starts from the current namespace.

1 puts "Current top namespace: [namespace current]"
2 # Output: Current top namespace: ::

1 namespace eval a {
2 proc hello args {
3 return "Hello World!"
4 }
5 }
6 puts "Absolute call to hello in a: [::a::hello]"

1 namespace eval b {
2 namespace eval c {
3 proc hello args {
4 return "Hello World!"
5 }
6 }
7 puts "Relative call of hello in c in b: [c::hello]"
8 }
9 puts "Absolute call of hello in c in b: [::b::c::hello]"

46 Embedded Domain Specific Language design in TCL | Uni. Heidelberg - LS Rechnerarchitektur

Packages

Most modern Dynamic languages offer a mechanism to automatically load code
libraries/ modules. Packages in TCL allow a user, on the one hand, to require the interpreter
to find the sources for a set of functionalities, and a developer, on the other hand, to group
them under a set of source file, and define a way for them to be loaded upon request. The
package runtime environment does not actually require any formal packaging of source files,
but it relies on finding an action (i.e. some code to execute) to take for a given
{package,version} tuple, when a user requires it. The mentioned action will nearly always
consist in loading one or more source files, but could be anything else, and must declare
providing the {package,version} tuple, as illustrated in Figure 3-3.

Figure 3-3 Package search procedure

 However, the package definition (i.e library) and requirement (i.e. user application)
are always in separate locations, so the TCL interpreter provides some standard
methodologies to find package definition actions (the calls). The most widely used ifneeded
methodology relies on special files containing the package definition actions, which are called
pkgIndex.tcl. Folders containing such pkgIndex.tcl files are located using environment
variables like TCLLIBPATH (others exist). A Concrete package loading flow is described in
Figure 3-4, where the myPackage package’s source file is saved in a folder, with a pkgIndex.tcl
alongside that can be auto-detected, and contains the action to perform to load the source
code, in this case a simple command call. source

 Note that the myPackage.tcl source file starts with a namespace definition. This is a
very common strategy to ensure no overlapping can happen between sources loaded from
other packages, and it is applied to all the modules that are presented in this thesis.

{Package,version}
required

Search
for action

Found: Execute Action

Not Found:
Error

Found, but not
providing: Error

1 package ifneeded a 1.0.0 {
2 package provide a 1.0.0;
3 puts "Loading a"
4 }
5
6 package require a

Correct package definition

1 package require b
Output:
1 # can't find package b
2 # while executing
3 # "package require b"

Incorrect package definition

http://tmml.sourceforge.net/doc/tcl/package.html
http://tmml.sourceforge.net/doc/tcl/source.html

Uni. Heidelberg - LS Rechnerarchitektur | Embedded Domain Specific Language design in TCL 47

Figure 3-4 Standard TCL Module loading using pkgIndex.tcl

3.1.2 Self evaluation

Dynamic languages commonly provide a function to evaluate some code contained in
a string. It is not used very often, and also not recommended to avoid attacks like code
injection, but can be very useful to run some code that is created at runtime, or fetch from an
input stream. In TCL, the evaluation command is called , as can be seen in Example 3-5. eval

A very concrete usage of eval will be shown in the section 3.2.

1 set a "Hello"
2 eval {
3 puts "$a World!"
4 }

Output:

1 Hello World!

Example 3-5 TCL eval command for self evaluation

myPackage/
 - myPackage.tcl

1 package provide a 1.0.0
2
3 ## Code here
4 namespace eval myPackage {
5
6 }

User Application

1 package require a

myPackage/
 - pkgIndex.tcl

1 package ifneeded a 1.0.0 [list \
2 source $dir/myPackage.tcl \
3]

Package Definition Action Source file with package provide

myPackage/

TCLLIBPATH=“…“

Environment variable

http://tmml.sourceforge.net/doc/tcl/eval.html

48 Embedded Domain Specific Language design in TCL | Uni. Heidelberg - LS Rechnerarchitektur

3.1.3 Stack frame and execution level

Last but not least, it is very easy in TCL to follow the current execution level, called
current frame. There are a few commands that enable inspecting the current stack frame,
linking to variables in upper stack frames, or evaluating code in upper ones. Figure 3-5
provides a brief overview of the three main Stack Frame interactions and their matching TCL
commands.

Figure 3-5 Stack frame interactions overview

Introspection

The command provides information about the TCL info
interpreter state, including about the current stack frame. The

user can, for example, retrieve the currently called method or the current file and line that
are being interpreted. If no argument is provided, it simply returns the actual stack frame
level, with 1 being the top level.

Figure 3-6 Stack frame level information in TCL

Stack Frame Interaction

info frame uplevel upvar

Introspection Variable linking Self-evaluation

1 proc myCommand args {
2 puts "My Command frame level: [info frame]"
3 }
4
5 puts "Top frame level: [info frame]"
6 # Top frame level: 1
7
8 myCommand
9 # My Command frame level: 2

info frame ?number?

http://tmml.sourceforge.net/doc/tcl/info.html

Uni. Heidelberg - LS Rechnerarchitektur | Embedded Domain Specific Language design in TCL 49

Variable linking

Referencing variables that are declared in an upper stack
frame level is possible through the use of the upvar

command. Once a variable is linked in the current stack frame under a specific name, the
binding is bidirectional, meaning that changes to the variable’s value will be mirrored in the
upper level when execution resumes. Figure 3-7 illustrates the usage of . The code upvar
example only links one level up, and shows that linking with the same name in both frames is
allowed.

Figure 3-7 Upper level variable linking

 1 set a "Hello"
 2 proc upVarExample args {
 3
 4 upvar a locala
 5 upvar a a
 6 puts "\$a -> $locala"
 7 set a "$a World!"
 8 }
 9 upVarExample
10 puts "Value of a: $a"

$a -> Hello
Value of a: Hello World!

upvar ?level? upvar ?myVar?

http://tmml.sourceforge.net/doc/tcl/upvar.html

50 Embedded Domain Specific Language design in TCL | Uni. Heidelberg - LS Rechnerarchitektur

Self-Evaluation

By combining standard self-evaluation, which we already
presented, and the concept of , we can call for some upvar

code to be evaluated in an upper stack frame. In this case, the user must be aware that the
current stack frame context won’t be accessible anymore, so it is not possible to link down to
variables or arguments. In Figure 3-8 two code examples are given, one of which illustrates
an invalid usage of caller-level context access. uplevel

Figure 3-8 Code execution in an upper level

Conclusion

Stack frame manipulation is a design pattern which is difficult and dangerous to use
because it generates implicit changes of context, and the risk is high to lose sight of code
runtime behaviour. Sometimes, though, it can be very useful, especially if its usage stays well
encapsulated and hidden from the end user, when creating a library, for example. In the next
section about closure implementation in TCL, we will show how the usage of Stack frame
introspection, variable linking and self-evaluation allowed us to improve the TCL language by
mimicking the behaviour of Functional Programming closures and high-order functions.

$a -> Hello World!
can't read "b": no such variable

 1 set a "Hello World!"
 2 proc upLevelExample b {
 3
 4 uplevel {
 5 puts "\$a -> $a"
 6 }
 7
 8 uplevel {
 9 puts "This is $b"
10 }
11 }

Fails

Ok

upvar ?level? upvar ?myVar?

http://tmml.sourceforge.net/doc/tcl/upvar.html

Uni. Heidelberg - LS Rechnerarchitektur | Embedded Domain Specific Language design in TCL 51

3.1.4 Pitfalls

So far we discussed some specific interesting features of TCL, however experience
shows that the simplicity of TCL leads to a few issues which don’t usually seem evident to
new comers. Most programming language have an interpreter or compiler which performs a
lot of syntax checks, and don’t really allow ambiguities or valid syntax constructs which don’t
lead to the result a programmer would intuitively expect.

Lists are Lists

In TCL, all content placed between creates a new static list, meaning that the { … }
pure content is gathered, without any variable resolution, or even comment lines escaping.
Example 3-6 illustrates this by creating two lists whose content may not seem very intuitive:

 The first list contains a variable call ($d), but it is saved as a simple string in the list.
Getting the value of $d would require creating the list using the command [list …]

 The second one contains two comment lines, which are added as content to the list.
The line “# c” even generates two entries because the interpreter uses any
whitespace character (space, tabulation and return to line) as separator.

1 set a {b c $d e}
 2 # b c $d e
 3
 4 set a {
 5 b
 6 # c
 7 d
 8 #e
 9 }
10 # b
11 # #
12 # c
13 # d
14 # #e

Example 3-6 Ambiguous Static list example

1 set d "hello"
2 set a [list b c $d e]
3 # b c hello e

52 Embedded Domain Specific Language design in TCL | Uni. Heidelberg - LS Rechnerarchitektur

Commands don’t span over multiple lines

Unlike static list building, command arguments cannot be spanned over multiple
lines, otherwise the arguments would be interpreted as new commands to execute. To make
this easy to understand, we can just build the second list of Example 3-6 using the [list …]
command, as shown in Example 3-7 and show how new lines have to be escaped to avoid
being formally interpreted.

Example 3-7 Command span over multiple lines requires line escaping

Everything is a list

TCL performs very little syntax checks, as all constructs fall back to commands calls,
including control structures. Knowing that the basic list’s elements separator is a whitespace
character, those become very important for valid syntax. Omitting one may lead to a wrong
number of arguments in a command call, or even make the interpreter try to call an
inexistent one. Such an extremely common error happens when writing if .. elseif .. else …
construct, as illustrated in Example 3-8.

Example 3-8 If-else common typo pitfall

1 set a [list
2 b
3 # c
4 $d
5 #e
6]

invalid command name "b"

1 set a [list \
2 b \
3 # c \
4 $d \
5 #e \
6]

Line escape: \

1 if {1==2} {
2
3 } elseif {1==3} {
4
5 } else {
6
7 }

1 if{1==2} {
2
3 } elseif {1==3} {
4
5 } else {
6
7 }

invalid command name "if{1==2}"

missing „ „ character

1 if {1==2} {
2
3 } elseif {1==3} {
4
5 } else{
6
7 }

invalid command name "else{"

missing „ „ character

Uni. Heidelberg - LS Rechnerarchitektur | Embedded Domain Specific Language design in TCL 53

3.2 Implementation of Closures in TCL

n section 2.4, we presented the idea of using the high-order functions paradigm
from functional programming to embed a programming interface (API) in a
language. This API could then be adapted to implement a semantic mirroring a

standard domain specific language. Most specifically, some examples have been presented
using the Scala programming language, which already includes the required features.

Since TCL is not a functional language, there is no direct support for closures.
However, looking back at Definition 2.1, we already know three aspects are needed:

 Capturing the function definition (i.e. some code), and call it whenever required.
 Resolve the free variable references present in the context of the closure definition

(the location in source code where it has been defined).
 Protect local variables from possible name clashes with environment variables

Moreover, given that closures are usually passed to high-order functions (Definition
2.2), they are in this case passed down in the call stack to some utility functions which will
make use of them (refer to list example in 2.2.2), we can define a closure subset called “stack-
down only”, where free variable references would thus always be up-stack, or local.

This limitation is critical, because allowing a closure to be reused in the parent
context of its definition location would require making the references to the local variables
safe against context clean-up that happens after a return from a function call. As presented in
Figure 3-9 on the left-hand side, this would be problematic, and require a garbage collector
responsible for clean-up when the closure itself is not needed anymore. Such a mechanism is
not available in TCL and is not really needed for our usage.

I

Figure 3-9 Stack-down closure subset

54 Embedded Domain Specific Language design in TCL | Uni. Heidelberg - LS Rechnerarchitektur

The right-hand side of Figure 3-9 shows a valid use case, where the closure is run in a
frame level greater than or equal to the target variable to be bound. The requirements for a
closure implementation can be refined to:

 Capture and call some code (i.e. an anonymous function definition) whenever
required

 Resolve variables up-stack only.

Looking back at section 3.1, we notice that those two features have already been
presented (we recommend going through 3.1.2 and 3.1.3 before reading further). We are
going to present here how we brought them together to offer the user a closure
programming interface.

Over time, we came to two different approaches, the second one stemming from
some limitations of the first try which where difficult to solve.

Uni. Heidelberg - LS Rechnerarchitektur | Embedded Domain Specific Language design in TCL 55

3.2.1 First implementation (v1 and v2)

In order to mirror the closure examples presented so far in other languages, we will
start by analysing two very simple closure executions in TCL. The goal here is to make the run
level clear, which is why both outputs are identical, but under different run contexts:

 In Example 3-9 left, a closure is run, but behaves as if the content was run without
the call, because the command always evaluates the code with doClosure doClosure
an up-level of at least 1, to run in the caller context (the one the user means).

 In Example 3-9 right, the closure is run inside a command, so that one execution level
separates the definition of variable its usage. The output shows that is has been $b
properly “closed”, as the value updated in the closure can be seen in top level.

Example 3-9 left: No effect closure ; right: Closure with one bound variable

3.2.1.1 Implementation

The basic idea behind the first version implementation presented in
Figure 3-10, is to prepare the closure by looking up the variable references using a regular
expression (syntax:) in the code, then for each found variable, look-up a possible $variable
existing reference in any up-level context, and if found, prepend the binding command
() to the closure definition before evaluation. upvar

 Repository: odfi-dev-tcl, Path: tcl/closures-2.1.0.tm

$a is 1
$a is now 2

 1 set a 1
 2 odfi::closures::doClosure {
 3
 4
 5 puts "\$a is $a"
 6 incr a
 7
 8 }
 9
10
11
12 puts "\$a is now $a"

 1 set b 1
 2 proc runClosure cl {
 3 odfi::closures::doClosure $cl
 4 }
 5 runClosure {
 6
 7
 8 puts "\$b is $b"
 9 incr b
10
11 }
12 puts "\$b is now $b"

 $b is 1

$b is now 2

Executed at this level

56 Embedded Domain Specific Language design in TCL | Uni. Heidelberg - LS Rechnerarchitektur

Applying the algorithm to Example 3-9 (right), we can have the library print the actual
function definition that is going to be executed. In Example 3-10, the same code is presented,
but the call is replaced by the final fully closed code which is evaluated. doClosure

Figure 3-10 Function definition "closing" flow diagram

1 set b 1
 2 proc runClosure cl {
 3 eval {
 4 catch {upvar 1 b b}
 5 puts "\$b is $b"
 6 incr b
 7 }
 8 }
 9 runClosure {
10 puts "\$b is $b"
11 incr b
12 }
13 puts "\$b is now $b"

Example 3-10 Closure based code with "closed" evaluated function definition

doClosure

Uni. Heidelberg - LS Rechnerarchitektur | Embedded Domain Specific Language design in TCL 57

To go into details, the command processes the function definition passed doClosure

to as follows: runClosure

1. Variable search result: { b }

2. Search for variable in levels: 2 (call location in) to 1 (top) b runClosure
a. Found in level 1
b. Prepare call with level reference: 1 (difference between found level upvar

and call level, 2 − 1 = 1 in our case)
3. Evaluate the prepared call and the passed closure using (equivalent upvar uplevel 1

to simple in as shown in line 3). eval runClosure

3.2.1.2 Variable detection issue

Use cases presented so far work for most cases, but an issue appears when searching
for the free variables that should be closed upon. We mentioned in section 3.1 that variable
values were to be referenced using the character, whereas variable updates are performed $
by simply passing the name to a command. It is illustrated in Example 3-11, where our closure
only changes the value of . In this case, it won’t be bound to the top-level b variable if only b
value references are searched.

Example 3-11 Closure variable detection issue

This precise case is not very common, because most closure definitions call for the
values of variables to be closed, which will then be detected (because of the). But $
sometimes they don’t, and the code will still run error-free, just not producing the expected
output. To fix this issue, the variable search has to look for multiple usage patterns:

 Value call: format $variableName
 References passed to commands

o Needs to be statically implemented because we can’t identify command
string arguments that are variables references (like set b 4 in the
example).

 1 set b 1
 2 proc runClosure cl {
 3 odfi::closures::doClosure $cl
 4 }
 5 runClosure {
 6
 7 set b 4
 8
 9 }
10 puts "\$b is now $b"

$b is now 1

58 Embedded Domain Specific Language design in TCL | Uni. Heidelberg - LS Rechnerarchitektur

In the current implementation, the variable search has been enriched to solve this
issued if a variable is incremented using the command, which is a use case that can be incr
encountered in loops.

3.2.1.3 Run level selection

Finally, it is important to be able to select the execution level of the closure. Indeed, if
we modify our base example to introduce namespaces (so far everything ran in the top level,
which is an “easy-life” corner case), we can see that our closure doesn’t run in the top level
context anymore, which is the programmer’s wish, but in the procedure runClosure
namespace. That is why we introduced a way to have the closure be executed in a level
chosen by the user. In Example 3-12, the call to is updated on the right-hand side doClosure
by adding a 1, meaning that the closure should be run one level up from the call location.

Example 3-12 Closure run level selection

 1 namespace eval myNS {
 2
 3 proc runClosure cl {
 4 odfi::closures::doClosure $cl 1
 5 }
 6
 7 }
 8
 9 myNS::runClosure {
10
11 puts "Context: [namespace current]"
12
13 }

doClosure $cl 1

Context: ::myNS Context: ::

Uni. Heidelberg - LS Rechnerarchitektur | Embedded Domain Specific Language design in TCL 59

3.2.1.4 Variable protection and implicit naming

So far we have only worked with closures being lambda function without input
arguments. Some language constructs may however pass arguments to a closure, like list
iterators (see 2.2.2). This issue is automatically handled by the fact that the function
definition is only closed in the context where it is going to be executed. A function may then
set a variable value before running the closure, which may in turn use this variable, given that
a specification documents the chosen name. This is illustrated by Example 3-13 which shows
the implementation of a simple list iterator.

Example 3-13 List iterator "each" construction in TCL

This usage is valid as is, but it does not cover the case of name clashing. Indeed, the
variable called can be considered being an input parameter of the λ-expression used as it

closure. The counter-example presented in Example 3-14 has been changed to in the ($it $i

implementation of the procedure) is simply the case where the user would call the each each
procedure inside the closure passed to a first each call. A name clash happens in a quite
subtle way, as the dynamic execution nature of the closure leads to a wrong value for the it

variable in the enclosing call…only after the second level invocation. each each

1 package require odfi::closures 2.0.0
 2
 3 proc each {list closure} {
 4
 5 foreach it $list {
 6 odfi::closures::doClosure $closure 1
 7 }
 8
 9 }
10
11
12 set a {b c d}
13
14 each $a {
15 puts "List element: $it"
16 }

Implicit iterator variable name

List element: b
List element: c
List element: d

60 Embedded Domain Specific Language design in TCL | Uni. Heidelberg - LS Rechnerarchitektur

Example 3-14 Name clash in closures without variable protection

A name clash protection for closure input parameters has to be implemented, but as
we have seen, the implementation is quite lazy and has no mechanism to support input
parameters definition. Protecting per hand in the implementation of the each procedure is an
option, but at the time we stumbled upon this issue, too many libraries were already
implementing this kind of constructs.

For the sake of simplicity, we decided to introduce the variable it

as a “variable to protect” in the implementation of . The doClosure
protection mechanism does not require any innovation, and simply
consists of a value stack, where the variable’s value is saved before
running the closure, and restored afterwards. The valid result of Example
3-14 is shown on the right, when is replaced by , and thus gets $i $it
protected by the implementation.

Variable value pull

It might not be trivial at first sight, but the previous example introduced an issue linked to the
run level selection. If we analyse the $it variable location, we obtain:

 $it is located in the each level
 $it is used by the closure at 𝐷𝑎𝑐ℎ 𝐷𝐷𝑣𝐷𝐷 − 1

Technically, it is not possible to bind to its definition location, as the closure is run $it

higher than stack level. The implementation must thus handle the case where free each
variables must be bound to a variable present “down-stack” by copying the value up before
running. Although this might seem tricky, we can sense that it is not really, as this behaviour
is actually mirroring what is happening in standard function calls, for which input arguments
values are copied and passed to the function execution’s context. We join here the critic
emitted previously about the lack of formal λ-expression support.

 1 set a {b}
 2 set d {e f}
 3 each $a {
 4
 5 puts "(a): $i"
 6
 7 each $d {
 8 puts "(d): $i"
 9 }
10
11 puts "(a): $i"
12 }

(a): b
(d): e
(d): f
(a): f

$i is valid

$i is invalid

Name clash on $i

(a): b
(d): e
(d): f
(a): b

Example 3-15 Valid
output with variable

name protection

Uni. Heidelberg - LS Rechnerarchitektur | Embedded Domain Specific Language design in TCL 61

3.2.1.5 Limitations

This first implementation of our closure algorithm has been used by most of the
presented applications in this thesis. However, some issues which had been overseen
appeared, and although usually not very critical, can be extremely unpleasant to debug, as
they usually don’t produce any errors, just an incorrect result. Those issues are following:

 Incomplete support for non local free variable detection (value calls using are $
detected, updates by name, as with set are not well supported)

 Closure input variables are implicitly set by execution context. The user cannot
specify a state-of-the-art λ-function with input arguments specification.

 Look-ahead detection makes generic implicit variables protection not possible (the
iterators, for example, must be named). The user cannot customize the variables $it
to be protected as input arguments.

 Recursive closure calls will need to search and resolve multiple times the same
variables to propagate bindings at each call level.

3.2.2 Second implementation (v3)

Simply fixing the issues from the first closure implementation by handling corner
cases per hand would make the code complexity rise, and make ensuring stability difficult.
Although a unit-testing strategy is used to make sure this low-level library doesn’t break, we
needed to think about a more meaningful way to proceed than the brute-force solution
presented previously, especially considering that some formal closure definition issues
appeared.

One more time, three main phases are executed when running a closure:

1. Find the free variables usages (value call using or updates by name) $
2. Protect and restore the local variables that are subject to name clash with the

environment
3. Bind the variables to the environment when necessary, or pull them up.

The first point is not execution context dependent (the code is written once, and not
changed dynamically), but the two last rely on the context. This is why we explored the idea
of changing the phases order in the following way:

Repository: odfi-dev-tcl, Path: tcl/closures-3.0.0.tm

62 Embedded Domain Specific Language design in TCL | Uni. Heidelberg - LS Rechnerarchitektur

 First implementation:
1. Detect variables
2. Search and bind
3. Run

 Second (new) implementation:
1. Detect variables

 Replace them with runtime value search procedure call
2. Run

 Variables calls are resolved and bound to environment

3.2.2.1 Variable value resolution

First, we are going to focus on running closures, ignoring the issues which are related
to the definition of formal anonymous λ-expression. Delegating the variable binding to
runtime is an easy task, like in the first implementation we just look for the variable value
calls, but replace them by a procedure call which will try to resolve the variable. Example 3-16
shows the actual internally run code based on the user input. The old name has doClosure

been replaced by , and we can see that is going to be bound and retrieved only when run $b

evaluating the call to . odfi::closures::value

Example 3-16 Runtime variable binding in closure

1 set b 1
 2 proc runClosure cl {
 3 eval {
 4 puts "\$b is [odfi::closures::value {b}]"
 5 incr b
 6 }
 7 }
 8 runClosure {
 9
10 puts "\$b is $b"
11 incr b
12
13 }
14 puts "\$b is now $b"

run

Uni. Heidelberg - LS Rechnerarchitektur | Embedded Domain Specific Language design in TCL 63

3.2.2.2 Variable update resolution

Once again, we stumble on the problem of variable updates, which are performed by
passing variable names without the character, like the call to in previous example. The $ incr
solution must be implemented using a runtime alternative as for the value resolution, as we
have no look-ahead at all anymore. The solution has actually already been presented in
section 3.1, Example 3-4. We can simply replace the implementation of the commands that
should update variables, and have them perform resolution before calling on the standard
implementation. The example for is illustrated in Figure 3-11, and this mechanism can be incr
reproduced for all required commands.

Figure 3-11 Runtime value updating procedure call model

There is no need to go deeper into details here, as the implementation mainly
focuses on exploiting TCL interpreter features, making sure error cases are correctly handled
to avoid leaving the closure execution context unclean etc… The reader can refer to the
source code for further details.

3.2.2.3 Lambda support

While presenting our first implementation, we mentioned two issues being related to
the lack of nice state-of-the-art support for λ definitions:

1. Variable protection
2. Variable value “pull-up” depending on the closure target run level

To solve those issues, we will first try to better formalise our closures as λ functions,
and the solution should naturally come out.

namespace: odfi::closures

Execution Context Closures library

1 proc incr {var args} {
2 ...
3
4 ## Call to normal incr
5 ::incr $var
6 }

1 incr b

odfi::closures::run

exported

odfi::closures::incr

::incr

64 Embedded Domain Specific Language design in TCL | Uni. Heidelberg - LS Rechnerarchitektur

Basically, we need to be able to provide a way to specify an anonymous function
definition, which requires:

1. Input arguments specification
2. An expression, of function body

Following a strictly formal design path, we could implement a solution that would
look like a LISP λ definition, by creating a procedure in the TCL interpreter, based on input
arguments and body, and return a reference so that it can be called. Examples can be found
on the TCL wiki (example: http://wiki.tcl.tk/519), or using the TCL 8.5 command, but no apply
precise literature reference could be found. The pure lambda creation and binding as a real
procedure would not really bring any specific advantages, and introduce unattractive syntax.
The function is a bit more interesting, but presents some important issues: apply

 No support for closures
 The syntax is not very natural
 Natively Supported from TCL 8.5, while most of this work has been constrained to TCL

8.4 because of third-party software limitations

As illustrated in Figure 3-12, the usage of apply is quite acceptable. The basic syntax
requires gathering input arguments and the body in a list, which makes a list inside of a list
(on the left side). This can be overcome by splitting the input arguments of the each function
(on the right side), which produces a nicer looking result although arguments and body are
separated from each other. The limitation on closure support could be overcome by passing
the body through the variables replacement algorithm, and surrounding the call to by apply
the necessary variable update procedures overrides (incr, set etc…).

Figure 3-12 “each” implementation using TCL 8.5 apply

1 proc each {list closure} {
2
3 foreach it $list {
4 apply $closure $it
5 }
6
7 }
8 set a {b c d}
9 each $a { it { puts "$it" } }

 1 proc each2 {list args body} {
 2
 3 foreach it $list {

 4 uplevel [list apply \

 5 [list $args $body] $it \

 6]
 7 }
 8
 9 }
10 each2 $a it { puts "$it" }

𝑎𝑎𝑎𝑎 → 𝐷𝐷𝑏𝑏

𝑎𝑎𝑎𝑎 → 𝐷𝐷𝑏𝑏

𝑎𝑎𝑎𝑎 → 𝐷𝐷𝑏𝑏

http://wiki.tcl.tk/519

Uni. Heidelberg - LS Rechnerarchitektur | Embedded Domain Specific Language design in TCL 65

In this light, the benefits of become quite limited, and it lacks the flexibility of apply
implicit variables. These, although presented in 3.2.1.4 as the consequence of an issue, are
quite convenient for lambda functions which will always be called using the same format. For
example, iterator functions, like our example’s , are nearly always going to see the each

closure’s input parameter named . This feature also exists in the Groovy language, where $it
the input arguments are assigned to an implicit variable name if not defined in the closure’s
arguments list.

3.2.2.3.1 Implementation

The syntax choice made for our implementation is very simple. One just has to look at
the formal λ definition we have been using in this section, and note it is exactly the one used
in the Scala programming language (see 2.2.2). Moreover, there is no parsing required to
support it in TCL, as it takes the form of a list, which is the base input format of everything in
this language. Figure 3-13 presents the two possibilities: closure definition with input
arguments specification or without. The “end” keyword refers to the end of the input list.

Figure 3-13 List based Lambda definition

Based on the use cases from Figure 3-13, two format definitions have been set for both:

 λ-expression list definition:

1. Optional:
 A List of input arguments (no { } required if only one argument)
 The symbol string “->” (Groovy Syntax) or “=>” (Scala Syntax)

2. Mandatory:
 The expression’s body, as remaining list content (not enclosed in a

sub-list)

𝑎𝑎𝑎𝑎 → 𝐷𝐷𝑏𝑏

0 1 2 … end

1 each $a { x -> puts "$x" }

0 … end

1 each $a { puts "$it"}

- -

Input argument specified

Input argument not specified

1 { {arg0 ... argn} -> body }, single argument: { arg -> body }
2 { {arg0 ... argn} => body }, single argument: { arg => body }
3 { body } (Unspecified)

66 Embedded Domain Specific Language design in TCL | Uni. Heidelberg - LS Rechnerarchitektur

 λ-expression call:

1. lambda: A λ-expression according to previous definition
2. arguments: A list of values to bind to the λ-expression’s input arguments.

Each element of the list has the following format:
 1-Element: the value

or
 2-Elements: a {name value} tuple. The name will be used as implicit

variable name if the λ-expression’s lacks input arguments
specification.

Finally, Figure 3-14 presents the example ported to this new format, in all use each
cases. It is to be noted that if an implicit definition is required, but the caller omits the name
specification in the arguments list, the runtime generates the name, with applyLambda
format “argn“ depending on the argument’s position.

Figure 3-14 applyLambda usage examples, with and without implicit naming

It is interesting to note that the call scheme slightly changed from the previous
implementation. Indeed, in version 2, the target execution level was selected when calling
the procedure (see 3.2.1.3). In this new implementation, the odfi::closures::doClosure
applyLambda call is fully defined with all required arguments, and can thus be executed in the
target execution level at user‘s discretion using a simple call. up-level

1 set a {b c d}
 2 proc each {list closure} {
 3
 4 foreach it $list {

 5 uplevel [list \

 6 odfi::closures::applyLambda \

 7 $closure \

 8 [list it $it]]
 9 }
10 }
11 each $a { x -> puts "$x" }
12 each $a { puts "$it"}

 1 set a {b c d}
 2 proc each {list closure} {
 3
 4 foreach it $list {

 5 uplevel [list \

 6 odfi::closures::applyLambda \

 7 $closure \

 8 [list $it]]
 9 }
10 }
11 each $a { x -> puts "$x" }
12 each $a { puts "$arg0"}

Explicit naming Implicit naming

1 odfi::closures::applyLambda lambda arguments?

Uni. Heidelberg - LS Rechnerarchitektur | Embedded Domain Specific Language design in TCL 67

3.2.3 Discussion

In this section, we have set the base for supporting λ-expressions and closures in TCL.
Although a good quality implementation has been reached in version 3, most of this thesis’
presented work is based on the version 2. The vast majority of encountered use cases were
well covered by this first implementation, and most users would not notice or stumble on
some of the limitations.

The feedback from experience and the fixes work done on this library will allow
future developments to be more solid and less prone to implicit errors. Still, we explored two
different implementation solutions, and the closure resolution logic has to be kept at the
runtime level. As we will see later, this is not such an issue, because a lot of use cases involve
running a closure only once.

However, in case of multiple usage of one single closure, as for list processing or
special constructs like the presented example, the variable search and replace is run ::each
every time, but this can be easily optimised by separately preparing the closure before
running it. Variable binding through at each invocation is to be expected, as each upvar

closure invocation relies on a procedure call to , causing the variables to be unbound uplevel
at end-of-call context clean-up.

The next section will present the usage of closures to create Embedded Domain
Specific Languages in TCL and give a concrete path to follow for future developments. All of
the examples will be based on the latest closure support implementation (v3), as the
applications presented in chapter 4 are using v2.

68 Embedded Domain Specific Language design in TCL | Uni. Heidelberg - LS Rechnerarchitektur

3.3 Embedded DSL in TCL

ow that we have implemented support for closures and high-order functions
(Definition 2.2) in TCL, we are fulfilled some of the requirements to be able to create
EDSLs. In regard to the checklist we set up in 2.4, it seems we are close to reaching

the destination. What is missing in the default TCL interpreter is support for named data
structures, like classes. Indeed, the examples presented in 2.4 relied on a simple systematic
process to create hierarchies:

1. Create a data structure
2. Configure by passing a closure
3. Update the hierarchy

or
1. Create a data structure
2. Update the hierarchy
3. Configure by passing a closure

Fortunately, TCL is well equipped with libraries, and numerous object-oriented
frameworks exist which we can use for this purpose. We are going to present the one we
used the most: incrTCL [43] and a next generation one which is worth of interest, although
more complex for non-specialists: the Next Scripting Framework [44].

3.3.1 Introduction with the incrTCL library

We want to focus here on applying the EDSL creation methodology to the TCL
language. We chose the incrTCL framework for object-oriented programming (OOP) because
it is very simple, presents a semantic very similar to the OOP features of well-known
languages like C++/Java/Scala, and is even included in the standard TCL distribution since
version 8.6. The presented development however is not limited to incrTCL, and can be easily
ported to any other library of the user’s choice.

To avoid being too abstract, we are going to analyse a concrete use case. Our goal
will be to create a simple image using the Scalable Vector Graphic (SVG) image format. An
SVG file is an XML document, which contains graphic object definitions (position, style etc…),
as presented in Figure 3-15.

Figure 3-15 Simple SVG definition with a rectangle and a circle with exported Bitmap on the right

N

 1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
 2 <svg xmlns="http://www.w3.org/2000/svg" version="1.1"
 3 width="40" height="40">
 4
 5 <rect fill="orange" opacity="0.4"
 6 width="40" height="40"
 7 x="0" y="0" />
 8
 9 <circle fill="green" opacity="0.4"
10 r="10" cx="20" cy="20" />
11 </svg>

Uni. Heidelberg - LS Rechnerarchitektur | Embedded Domain Specific Language design in TCL 69

Unfortunately, the SVG format has no support for object layout (like column, row and
grid). This could be achieved by binding JavaScript calls to place objects dynamically, but it
would make the picture output depend on the viewing application capabilities. What we
need to achieve creating an EDSL for SVG are both:

1. A Language to create the objects structure
2. A layout engine to easily define objects placement information

We are going to focus here on creating the language. The layout engine will be presented
later with a concrete application in 4.2.

When creating an EDSL using our methodology, the workflow is always the same:

 Define the data structure hierarchy
 Define the matching classes in TCL using the incrTCL library

o Each class will take a configuration closure as last argument of the
constructor
 The provided closure is then called inside the constructor

o Alternatively, the class will have a method called apply, which takes a
closure as input argument and runs it as a configuration closure.

 In each container class (a data structure containing another one), for each
aggregated data structure type, create a method which:

o Is named accordingly to the aggregated class name
 Example: The method in an SVG to add a will be called: <rect>

 rect
o Takes as input arguments:

 The required parameters to create an instance of the aggregated
class

 A configuration closure to pass to the new instance’s constructor
o Creates an instance of the aggregated class by passing to the

constructor: the parameters and optionally the configuration closure
o Optional: Stores it in the appropriate class field if necessary
o Optional: Passes the configuration closure to the configuration method, if

it is not the constructor

70 Embedded Domain Specific Language design in TCL | Uni. Heidelberg - LS Rechnerarchitektur

Now we just need to apply these rules to our SVG API (We only focus on general properties
and definitions here, the details are available in the source code).

The class hierarchy is presented in Figure 3-16 :

 The GraphicElement class holds common properties to Rectangle and Circle, like the
position, filling colour, or opacity.

 Both Rectangle and Circle are a GraphicElement
 The SVG class can hold multiple instances of Rectangle or Circle.

Afterwards, we can prepare the source code. We are going to only give code extracts
here, the full source can be accessed from the repository (see Appendix A for more details).
Following our rules, the SVG class needs:

 A constructor with a configuration closure input.
 A list to hold content.
 Width and Height dimensions.
 Methods to create Rectangle and Circle (only Rectangle is presented here), which

will become elements of our language.

Figure 3-16 SVG simple class hierarchy

 Repository: thesis, Path: sources/3.3-TCLEDSL/ svg-impl.tcl

Uni. Heidelberg - LS Rechnerarchitektur | Embedded Domain Specific Language design in TCL 71

Figure 3-17 SVG language top class implementation extract (full source in repository)

The code extract from Figure 3-17 shows the method called rect which acts as
constructor for the Rectangle class, as well as semantic keyword in the language.

Now we are ready to use our language. We just need an extra function definition to
create the SVG instance, which is our top level class. It is presented in Figure 3-18, and will set
the resulting variable for the user, to avoid a call in the form of which is not [svg { … }]
comfortable to use for the end-user.

 1 itcl::class SVG {
 2
 3 odfi::common::classField public width 0
 4 odfi::common::classField public height 0
 5
 6 public variable content {}
 7
 8 ## Runs the closure to configure at creation
 9 constructor closure {
10 odfi::closures::run $closure
11 }
12
13 public method rect closure {
14
15 ## Create
16 set newRect [::new Rectangle %auto]
17 $newRect apply $closure
18
19 ## Save
20 lappend content $newRect
21 }
22 }

72 Embedded Domain Specific Language design in TCL | Uni. Heidelberg - LS Rechnerarchitektur

Figure 3-18 SVG language user view

Finally, we add a method called on each class, which produces the SVG XML toString

(SVG produces the mark-up, and calls on the Rectangle and Circle <svg …> toString
instances). The results are presented in Figure 3-19. On the right side the produced picture is
the same as in Figure 3-15, but is the result from the generated SVG.

Figure 3-19 Result of generated SVG

This implementation flow was repeated for each of the libraries presented in 4.1, 4.2 and 4.3.

1 ## keyword is useless, only for the semantic beauty
 2 proc svg {varName keyword closure} {
 3 uplevel set $varName [::new SVG %auto $closure]
 4 }
 5
 6 ## After this class, the variable $mySvg contains the result
 7 svg mySvg is {
 8
 9 width 40
10 height 40
11
12 rect {
13 width 40 ; height 40
14 opacity 0.4 ; fill orange
15 }
16
17 circle {
18 r 10 ; x 20 ; y 20
19 fill green ; opacity 0.4
20 }
21 }

1 puts "[$mySvg toString]"

1 <svg xmlns="http://www.w3.org/2000/svg"
2 version="1.1" width="40" height="40">
3 <rect x="0" y="0" fill="orange" opacity="0.4"
4 width="40" height="40"/>
5 <circle cx="20" cy="20" r="10"
6 fill="green" opacity="0.4"/>
7 </svg>

Uni. Heidelberg - LS Rechnerarchitektur | Embedded Domain Specific Language design in TCL 73

3.3.2 Improved extensibility with the Next Scripting Framework (NSF)

We have just presented a methodology to create EDSLs using the incrTCL framework.
As we already mentioned, there are no reasons to limit ourselves to this setup, so we can
open the design space to profit from other frameworks’ features.

The main advantage of incrTCL is its simplicity, however after developing a few applications
some weaknesses appear. We present two of them here:

1. Variable naming confusions can appear between local variables and class fields
2. Language abstraction level enrichment is limited and requires good TCL

knowledge

Variable naming issue

The incrTCL framework does not distinguish class field naming from local variables
when updating values. This can lead to unnoticed confusions, leading to writing algorithms
that modify class fields when the developer intended to work on local variables. This is a very
classical problem, faced by nearly all object-oriented programming interfaces in all languages.
A gold-rule of object-oriented programming is to always clearly modify class fields by using
the self-pointer variable, but in the case of a TCL script, it is not very convenient, and the text
editors usually don’t provide coloured highlighting of class fields indicating possible
confusions.

Following-up on our SVG example, a developer is very likely to create a script that
generates a picture, and generate positioning errors. In Figure 3-20 we present two variants
of the same code, which generates a row of rectangles. We introduced the SVG element <g>

here, with coordinates although they are not allowed and won’t have any effect, they (x,y)
are here only to support our demonstration:

 On the left, the developer used the variable as temporary coordinate storage. $x

In this case, the variable update will only increase the position of the group, and x

leave the rectangles positions to 0 , as reading from refers to the class-field, $x

and not the parent . The result is five rectangles on top of each other. $x

 On the right, the variable has been renamed to to avoid conflicts. The script tx
produces the expected result of five rectangles next to each other.

 Repository: thesis, Path: sources/3.3-TCLEDSL/svg-variable-issue.tcl

74 Embedded Domain Specific Language design in TCL | Uni. Heidelberg - LS Rechnerarchitektur

Figure 3-20 Variable naming confusion example

Abstraction level improvement

To demonstrate the issue linked with abstraction level improvement, we can reuse
the previous rectangle row generator script, and replace the rectangles by our base example
rectangle + circle building block. To improve reusability, we wish to wrap the two-elements
set inside a function, to be reused by the end-user, as presented in Figure 3-21.

 Repository: thesis, Path: sources/3.3-TCLEDSL/svg-improveabstraction-issue.tcl

 1 set rectCount 5
 2 svg mySvg is {
 3
 4 width [expr $rectCount*(40+5)]
 5 height 40
 6
 7 group {
 8
 9 set x 0
10 ::repeat $rectCount {
11
12 rect {
13
14 width 40
15 height 40
16 opacity 0.4
17 fill orange
18 x $x
19 }
20
21 ## Add some spacing
22 set x [expr $x+40+5]
23
24 }
25 }
26 }

 1 set rectCount 5
 2 svg mySvg2 is {
 3
 4 width [expr $rectCount*(40+5)]
 5 height 40
 6
 7 group {
 8
 9 set tx 0
10 ::repeat $rectCount {
11
12 rect {
13
14 width 40
15 height 40
16 opacity 0.4
17 fill orange
18 x $tx
19 }
20
21 ## Add some spacing
22 set tx [expr $tx+40+5]
23
24 }
25 }
26 }

Uni. Heidelberg - LS Rechnerarchitektur | Embedded Domain Specific Language design in TCL 75

Figure 3-21 Circle in rectangle building block function definition

Using this procedure in our previous generator will produce an error as shown in Figure 3-22:

Figure 3-22 Simple function definition used as building block produces an error at runtime

Indeed, the or methods are not visible inside because of the rect circle rectCircleSet

extra call level. To solve this issue, we need to call the body in following context: rectCircleSet

 Using to be in the Group class uplevel

 Using the closures function to pass the procedure input arguments applyLambda

which are not visible anymore once in context uplevel

 1 proc rectCircleSet {ix iy} {
 2
 3 rect {
 4 width 40 ; height 40
 5 x $ix ; y $iy
 6 opacity 0.4 ; fill orange
 7 }
 8
 9 circle {
10 r 10 ;
11 x [expr $ix + 20]
12 y [expr $ix + 20]
13 fill green ; opacity 0.4
14 }
15 }

 1 set rectCount 5
 2 svg mySvgwrong is {
 3
 4 width [expr $rectCount*(40+5)]
 5 height 40
 6
 7 group {
 8
 9 set tx 0
10 ::repeat $rectCount {
11
12 rectCircleSet $tx 0
13
14 ## Add some spacing
15 set tx [expr $tx+40+5]
16
17 }
18 }
19 }

Frame level +1

invalid command name "rect"

76 Embedded Domain Specific Language design in TCL | Uni. Heidelberg - LS Rechnerarchitektur

The procedure can be then rewritten as presented in Figure 3-23, yielding rectCircleSet
correct results:

Figure 3-23 User-defined language procedure, with valid call-scheme

Both of the issues that have been presented can be solved by using another
framework than the incrTCL one. We are going to present how the Next scripting framework
(NSF, https://next-scripting.org) can be used as a more powerful tool than incrTCL. It is the
continuation work of the XOTcl framework [45], and offers a lot of powerful features, which
we don’t want to detail fully here , but we invite the reader to read the tutorials on the Next
Scripting website (A next framework installation is provided in one of the thesis software
package, see Appendix A) .

 1 proc rectCircleSet {ix iy} {
 2
 3 set lambda {
 4
 5 rect {
 6 width 40 ; height 40
 7 x $ix ; y $iy
 8 opacity 0.4 ; fill orange
 9 }
10
11 circle {
12 r 10 ;
13 x [expr $ix + 20]
14 y [expr $iy + 20]
15 fill green ; opacity 0.4
16 }
17
18 }
19

20 uplevel [list \

21 odfi::closures::applyLambda \

22 $lambda [list ix $ix] [list iy $iy] \

23]
24
25 }

OK

https://next-scripting.org/

Uni. Heidelberg - LS Rechnerarchitektur | Embedded Domain Specific Language design in TCL 77

3.3.2.1 Switching frameworks: semantic and feature issues

The first challenge we have to face when switching the underlying Object-Oriented
framework is the change in the semantics and features. The NX framework does not handle
constructor definition with arguments in a satisfactory way, which is an issue if we follow
back our SVG EDSL implementation flow. However, it was defined in the workflow listing that
objects could be build without using a configuration closure as constructor argument, but
instead by creating an apply method to be called later.

In NX, this “class + apply” implementation flow would be mandatory for all classes,
but we can be a little bit creative and define a utility function that would do that for us. To
introduce the basic syntax of NX, Figure 3-24 presents the definition of a simple Class, with an
appropriate “apply” method. On the left using standard NX syntax, on the right using a utility
function (see source code for details).

Figure 3-24 Class definition with configuration closure in NX

Variable name conflict

The class-field name conflict issue is solved explicitly by NX. All class fields and class
methods in NX must be called using the character prefixed to their name. This way, all ‘:’
class-level references are made crystal clear. Thus, the user would have to knowingly create
the confusion by using variable names starting with , and calling their values using the ‘:’

 special syntax, as presented in Example 3-17. ${:varname}

 Repository: thesis, Path: sources/3.3-TCLEDSL/svg-nsf.tcl

1 nx::Class create Test {
 2
 3 # Class Field
 4 :property {x 0}
 5
 6 # Method
 7 :public method apply cl {
 8
 9 odfi::closures::run $cl
10 }
11
12 # Method
13 :public method x x {
14 set :x $x
15 }
16 }

 1 edslClass Test {
 2
 3 :property {x 0}
 4
 5 :public method x x {
 6
 7 set :x $x
 8
 9 }
10
11 }

nx:Class wrapper function
 thesis, sources/3.3-TCLEDSL/svg-nsf.tcl

78 Embedded Domain Specific Language design in TCL | Uni. Heidelberg - LS Rechnerarchitektur

Example 3-17 Variable and method calling scheme in NX

This clarification comes however to the price of the prefix. In Figure 3-25, the first :

SVG example has been reproduced with an NX implementation. It could be debated if this :
prefix would become a show stopper for the end-user acceptance.

Figure 3-25 Simple SVG picture EDSL using the NX framework

1 # NSF style naming with ':'
2 set :v "Hello"
3
4 # Natural usage -> invalid
5 puts "Res: $:v"
6
7 # Explicit name wrapping -> valid
8 puts "Res: ${:v}"

Res: $:v

Res: Hello

1 svg mySvg is {
 2
 3 :width 40
 4 :height 40
 5
 6 ## Create the rect (x and y to 0 per default)
 7 :rect {
 8 :width 40
 9 :height 40
10 :opacity 0.4
11 :fill orange
12 }
13
14 :circle {
15 :x 20
16 :y 20
17 :fill green
18 :opacity 0.4
19 :r 10
20 }
21 }

Uni. Heidelberg - LS Rechnerarchitektur | Embedded Domain Specific Language design in TCL 79

3.3.2.2 Dynamic API Enrichment

The second issue we presented in introduction to this section treated the extensibility
of the EDSL. In other words, how a user can easily add custom language elements to add
abstraction levels to the existing language. We are going to illustrate two ways to proceed
here to spare the developer the necessity to add some black-magic boiler plate code because
of execution context:

1. One can easily wrap the advanced function calls to hide them, and keep the
methodology as presented before.

2. NX allows defining class mixins, which allows the user to write a class, whose
content will be added to another one.

3.3.2.2.1 Special procedures

It is enough here to simply wrap the code presented in Figure 3-23 to hide the
 and calls from the developer. Figure 3-26 presents the results. uplevel applyLamba

Figure 3-26 Procedure definition wrapper for automatic uplevel execution

 Repository: thesis, Path: sources/3.3-TCLEDSL/svg-nsf.tcl

 1 proc oproc {name args body} {
 2
 3 ## args transformed to match applyLambda format
 4 ## Format for each: [list name $name]

 5 set argsForCall [join \

 6 [odfi::list::transform $args {
 7 return "\[list $it \$$it\]"

 8 }] \

 9 " "]
10
11 ## Create the procedure
12 ## The body is called using applyLambda
13 uplevel "
14 proc $name {$args} {
15 uplevel \[list \
16 odfi::closures::applyLambda \
17 [list $body] $argsForCall \]
18
19 }
20 "
21 }

Input Arguments Body

Lamda Expr.

Final procedure

Level +1

80 Embedded Domain Specific Language design in TCL | Uni. Heidelberg - LS Rechnerarchitektur

This approach presents the main
advantage of being framework agnostic,
and can be reused if the same kind of
execution level issue is encountered in
another context. The user only needs to
know to replace the keyword by “proc”

, as can be seen on the right. “oproc”

The main drawback is that it only
runs code in a different level, but does not
define real new methods for any class.
Standard Object-Oriented features like
overriding, method chaining etc… are not
available.

3.3.2.2.2 NX mixins

An alternative to the previous “oproc” solution is using a class mixin. A mixin is a
class, whose methods and properties can be mixed in the definition of another class. It differs
from standard inheritance, because a mixin acts like a copy, and only shares its type
definition with the target class, but does not alter the inheritance hierarchy.

In Figure 3-27, class A inherits from class B, and includes the properties, methods and
type of class C, but does not inherit from class C (as opposed to multiple inheritance allowed
in some languages like C++).

Figure 3-27 Class hierarchy and mixin

 1 oproc rectCircleSet {x y} {
 2
 3 :rect {
 4 :width 40 ; :height 40
 5 :x $x ; :y $y
 6 :opacity 0.4
 7 :fill orange
 8 }
 9
10 :circle {
11 :r 10 ;
12 :x [expr $x + 20]
13 :y [expr $y + 20]
14 :fill green
15 :opacity 0.4
16 }
17 }

Example 3-18 Rect + Circle using oproc

Uni. Heidelberg - LS Rechnerarchitektur | Embedded Domain Specific Language design in TCL 81

 Mixins exist in other programming languages under different names sometimes.
They are for example called traits in Scala. To adapt our “Rectangle+Circle” example using a
class mixin, the developer must proceed as following:

 Create a Class with the new method/properties.
 Call the target Class to mix the new class definitions in its own.
 Adapt the source code. We now have a full-featured method, its invocation must

thus be prefixed with . “:”

Figure 3-28 presents the implementation results, with the new configuration on the
left, and its usage to produce a picture on the right. You can note that the source code has
been updated with local variables being named and , without any problem as the class-x y

field can only be updated using the variable named and . :x :y

Figure 3-28 Rectangle + Circle method as class mixin

 1 ## Class Definition
 2 edslClass RectCirc {
 3
 4 :public method rectCircleSet {x y} {
 5 :rect {
 6 :width 40 ; :height 40
 7 :x $x ; :y $y
 8 :opacity 0.4 ; :fill orange
 9 }
10
11 :circle {
12 :r 10 ;
13 :x [expr $x + 20]
14 :y [expr $y + 20]
15 :fill green ; :opacity 0.4
16 }
17 }
18 }
19
20 ## Mixin SVG
21 SVG mixin RectCirc

 1 set rc 5
 2 svg mySvgRectCircMixin is {
 3
 4 :width [expr $rc*(40+5)]
 5 :height 40
 6
 7 set x 0
 8 ::repeat $rc {
 9
10 ## Add rect+circle
11 :rectCircleSet $x 0
12
13 ## Add some spacing
14 set x [expr $x+40+5]
15
16 }
17

82 Embedded Domain Specific Language design in TCL | Uni. Heidelberg - LS Rechnerarchitektur

3.3.3 Discussion and outlook

In this last section, we presented a standard methodology to use lambda functions
implemented in TCL to easily create an embedded Language. To illustrate our purpose, we
decided to create a mini-framework to draw SVG pictures. We will see in 4.2 a more complex
extension brought to this SVG framework to enable object layout through algorithms like
column, row, grid etc…

To emphasise on the generic workflow, two object-oriented programming libraries have been
selected as support for the implementation:

 The incrTCL framework proved to be easy to use, but lacks clarity in some cases,
as well as some features which would bring flexibility to the designer

 The NX framework presents less issues and more interesting features than
incrTCL (e.g. class mixin is one of them), but forces the usage of “:” prefixes when
calling class fields and methods of the EDSL.

Chapter 4 focuses on some applications that are backed by the presented EDSL
workflow, and they all use the incrTCL backend variant. For future versions and applications,
it would be interesting to consider switching to the NX framework. We believe the
acceptance issue caused by the introduction of characters can be balanced by the “:”
assurance the users won’t get caught by implicit name clashes. As developers of this library,
we ourselves encountered this issue a few times, and had a hard time finding the error. We
can only imagine the consequences for a simple EDSL developer who might not think about
this possibility and us providers also not thinking about documenting this trap properly.

An interesting experiment with the NX framework would be to try to modify the
implementation, and introduce an option at class definition, or method definition time, to
enable calls without the character. This way, we could keep the incrTCL colon-free call “:”
scheme, along with the NX naming protection. This would require in-depth analysis of the
sources, and the first basic tries did not look very encouraging (because of NX architecture,
not the sources quality).

On the other hand, the same could be done for the incrTCL library, and try to add a
mixin feature. The variable naming issue can be solved easily by creating a wrapper function
for class-field definitions, which can already be encountered in some examples’ sources.

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 83

4 Components for Hardware Software co-design

p to this point we have only setup a basic set of programming principles, which
should help us to better formalize our design flow issues from a top-level
perspective. We are now going to try to apply our new skills to a Hardware design

flow, and show that we can:

 Bridge the gap between the top-down and bottom-up views of a design.
 Integrate design steps and abstraction levels with each other along the design flow

The presented developments stem from working on the next generation high-
performance network Extoll, whose main components are described in [46] [47] [48]. The
Extoll design presents the specificity of being ported to various different target technologies
in different configurations. The generic architecture of the Extoll network controller is
presented in Figure 4-1. It outlines two generic components combined together:

3. The system interface features a host interface, an HTAX [49] network on chip
(NOC) to connect to some hardware functional units and a register file for
control and status registers.

4. The network controller holds the hardware which units provides the network
functionalities to the system, like low-latency messaging or shared memory
support, and a certain number of network links to connected nodes with each
others.

An overview of the possible Extoll configuration is provided in the following table. It
does not include the use cases for which only the system interface was reused, or the whole
configuration integrated in a special context.

U

Figure 4-1 Extoll NIC generic architecture

84 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

Target Name Host NOC width Links Count Link Size Technology
Ventoux Hypertransport 64bit 4 X4 Xilinx Virtex 6
Galibier PCIe Gen2 64bit 4 X4 Xilinx virtex 6
Aspin PCIe Gen3 128 bit 4 X12 Xilinx virtex 7
Gan Ainm PCIe Gen2 128bit 6 X8 Altera Stratix 5
Tourmalet PCie Gen3 256 bit 7 X12 ASIC TSMC 65 nm

Hypertransport

We can see that depending on the target technology, the capabilities of the network
vary. The less network links available, the less network topologies can be supported. Also, the
width of the network on chip limits the network communication available bandwidth.

We chose to focus in this chapter on a set of applications used in the design flows
applied to Extoll’s various configurations. They have the advantage of being highly reusable
across various architecture specifications, and span from hardware definition to software
interface. The chosen set is presented in Figure 4-2:

 RFG is a register file generator used to create the “RegisterFile” component on
the architecture picture.

 An ASIC Floorplanning programming interface as created for the implementation
of the Extoll Tourmalet configuration

 A part definition language was created to support Extoll printed circuit board
design.

 The Object to XML library (named OOXOO) is a high level XML data binding
technology used in various design flow related applications. It features a special
RegisterFile interface enabling easy support on the software side for the various
Extoll controllers.

Figure 4-2 Chapter 3 components overview

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 85

4.1 Register file generator

n important component of most digital hardware designs is a register file. Indeed, the
various functional units in a hardware hierarchy feature special registers, which are
used for configuration, control and status reporting. Such registers provide for

example:

 Performance counters (like how many data packets have been processed)
 States
 Control bits to start/stop hardware functions, and poll for completion

More specifically, they will be accessed by the software which is driving or monitoring
the hardware function. However, this software can only access data through Read or Write
operations (also called load and store) issued to addresses. Those addresses can point,
depending on the memory mapping, to various locations: process memory space, I/O address
space to external devices.

Important here is to notice that a software runs inside a continuous virtual address
space, while the hardware registers can be dispatched in a hierarchy, as presented in Figure
4-3. Both Read or Write at location A and B in the address space target two different
locations in the hardware hierarchy. One could argue about the option of maintaining by
hand a simple address decoder in the hardware, but some issues would appear very fast:

 A register file is usually used in multiple designs; do we want to repeat this
operation every time?

 Every change (like inserting a new register) will require modifying the address
information in the software, as well as maintaining the documentation.

 Some registers have to be mapped to special resources, like counters, or SRAM
blocks (for registers which handle data loads).

 Registers can be grouped and distributed among physically distinct hardware
units

A

Figure 4-3 Linear Address space to Hierarchical registers dispatching

86 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

As the tasks are generic and repetitive for all designs, they are very likely to be
handled by a tool that would generate all the required outputs. Such generators exist already,
mostly available as commercial software, thus closed to improvements, which makes them
difficult to adapt to any specific requirements. Flexibility is critical for large designs requiring
deep customisation, like the Extoll project, which is why an alternative implementation called
RFS was developed by C. Leber in [50]. We invite the reader to consult the thesis for a state
of the art reference.

We present in 4.1.2 a novel highly flexible register file generator implementation,
called RegisterFileGenerator (RFG). It is publicly available to use and open to contributions
under a GPL License (see Appendix A).

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 87

4.1.1 RFS: Workflow and limitations

Before presenting the architecture of RFG, we want to highlight a few issues
encountered while working with RFS. The workflow of RFS was based on an XML
configuration document describing the register file hierarchy (i.e. groups) and its elements
(registers, rams etc…). RFS would then generate various outputs like Verilog sources, HTML
documentation, or a result XML file with calculated addresses information (see Figure 4-4).

4.1.1.1 XML Format issues

The XML format specified presents some issues. Indeed, an XML tree is static, and some
special control structures are required to make a register file definition flexible, for example:

1. Some elements need to be redefined multiple times to the identical. A <repeat>
loop element was therefor introduced:

Figure 4-4 RFS Outputs

Repository: thesis, Path: sources/4.1-RFG/info_rf.xml

1 <repeat loop="8" name="scratchpad">
2 <reg64 name="scratchpad" desc="...">
3 <hwreg name="data"
4 width="64"
5 sw="rw"
6 hw=""
7 reset="64'h0" desc="..."/>
8 </reg64>
9 </repeat>

88 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

2. A single RFS specification may be shared by various designs, with slight
difference. As no control structures are available in XML, and none have been
implemented, the workflow relied on using C pre-processor calls to prepare the
XML files….which forces the user to write non-conform XML (!):

3. The special features, like marking a register as being a counter, or defining

read/write rights are specified with XML attributes, and are not distinguished
from mandatory data like register names. This is an obstacle for full flexibility and
user customisation:

An XML document is very flexible and well-suited as an exchange format. The
annotated XML output provided by RFS appeared a very useful feature, as it allowed the
team to write special software build on top of this XML output, among which: a Linux SYSFS
driver, some UVM System Verilog for verification environments, a generic software access
interface in Scala (see 0) etc…

However, XML as an input language for end-users is not a very good choice, both because of
the issues we just presented, and of the syntax overhead it presents.

4.1.1.2 Implementation in C

Finally, RFS was implemented using the C language, which requires compilation for
each target system. The XML parsing was implemented per hand to avoid any library binding,
which makes the source code quite cumbersome to understand. The C language also lacks
flexibility, and does not provide any intuitive and ready-to-use infrastructure for users to add
custom functionalities, like a plugin mechanism.

1 <reg64 name="tsc_global_load_value" desc="...">
2 #ifdef ASIC
3 <hwreg name="tsc_data"
4 width="64" sw="rw" hw="ro"/>
5 #else
6 <hwreg name="tsc_data"
7 width="48" sw="rw" hw="ro"/>
8 #endif
9 </reg64>

Non Parsable

1 <reg64 name="tsc" desc="...">
2 <hwreg
3 width="64"
4 sw="rw"
5 hw="rw"
6 hw_wen="1"
7 counter="1" />
8 </reg64>

Mandatory data

Special features

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 89

Considering the relative simplicity of the task, and the high requirement for flexibility,
it is not justified to use a compiled language, even less a low-level one like C. A dynamic script
language, such as Python, Ruby, Perl would have been better suited, not to mention the TCL
language which is very present in EDA software.

90 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

4.1.2 RFG implementation

 One of the very first requirements for a register file generator’s user interface is to
be able to clearly map the hierarchy of registers. An XML format was a meaningful solution,
as it natively provided a tree mapping of the register file structure, but with the drawbacks
that have been highlighted previously.

If we want to lighten the input format, we first need to find a solution that will still
allow a clear understanding of the register file’s hierarchical structure. Based on the work
presented in 3.3, it appears that we can reach this goal by creating an EDSL for the TCL
language. By doing so, we gain following advantages:

 The language naturally expresses the hierarchy
 All standard programming control structures (conditions, loops, variables etc…)

are available.
 No need to maintain an input format parser
 The user can structure the code as he wishes:

o Separated files can just be read using the TCL source command
o Special TCL functions which create register sets can be created and

reused at wish

We will present here the base elements of our new language. The presented data
structure hierarchy focuses on the main classes, the details can be consulted in the source
code. We also made the choice to purposely separate all processes of the tool chain in
distinct components: register file specification, address calculation and output generators of
all kind are all implemented independently from each other to maximise flexibility.

4.1.2.1 Language elements

Defining the language is fairly easy. We globally want be able to find back all the
elements that were supported by RFS [50]. Registers, RamBlocks and hierarchies (i.e. groups
that were named in RFS) stay somehow the same. The parameters applied to each regroot
element, like read/write rights and special features are now supported through a generic
data structure called Attributes. Each of those elements can hold multiple instances of the
Attributes class, which acts as a named container (like “sw” and “hw”, for the software and
hardware attribute groups), each containing some attribute definitions, which are {name
value} tuples.

 Repository: odfi-rfg, Path: tcl/rfg.tm

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 91

To sum-up, we need support for:

 RegisterFile, Groups (ex-regroot), Register and RamBlock.
 Attributes containers on each structural element (The class is named Attributes).
 Attribute tuples stored in the Attributes container.

We also made the choice to delegate the base register width to a global configuration
parameter, so that the software stays independent from the target host architecture. It can
be adapted to support special devices, like small Integrated Circuits, which for example often
have 8-bit wide registers reachable over an I²C interface. The in RFS element thus <reg64>

became a . register

We now simply repeat the workflow presented in 3.3, and specify the class hierarchy as
presented in Figure 4-5 (simplified version, refer to source code for full details).

Using proper method naming, and considering that all elements in the hierarchy must
have a name, the resulting implementation allows us to now write our register file
specification using following inputs:

Register with field

Figure 4-5 RFG simplified class hierarchy

 1 register example {
 2
 3 field a {
 4 width 12
 5 software ro
 6 hardware wo
 7 }
 8
 9 field b {
10 width 8
11 software rw
12 hardware wo
13 }

Special features

example

0 63
a b

11 19

92 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

This example shows how to create a Register named “example”, with two fields “a”
and “b”, and a default width of 64 bits. The and methods are shortcuts software hardware
for creating Attributes groups named software and hardware.

RamBlock

A RamBlock definition resembles a register definition, but must specify a depth which
characterizes the number of elements hold by the memory array. RamBlock is a fully
supported class definition in RFG, but it could be argued that it is equivalent to a group
definition that would replicate a register definition “depth” times, and have a special
attribute to signal it should be seen as a Ram. Because RamBlock definitions are widely used
as memory arrays in register files, we decided to keep their support distinct from the Register
element.

Group

A Group is a purely virtual structural element. It shares its name with its descendants
and helps organising the data structures. It might also share its special features with its
descendants, but this behaviour would have to be specified by the software component
supporting the concerned features.

1 ramBlock someRam {
 2
 3 depth 32
 4
 5 field a {
 6 width 12
 7 software ro
 8 hardware wo
 9 }
10
11 field b {
12 width 8
13 software rw
14 hardware wo
15 }
16

someRam

0 63
a b

11 19

…

[0]

[31]

myGroup 1 group myGroup {
 2
 3 register example {
 4
 5 }
 6 register example2 {
 7
 8 }
 9
10 }

myGroup.example

0 63

myGroup.example2

0 63

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 93

Top Register File

A RegisterFile instance is a start-point to create a register file definition. It may be
used standalone, or as part of another register file. It shares the behaviour of a group but is
considered a real structural element.

1 package require osys::rfg
 2
 3 osys::rfg::registerFile toptmp {
 4
 5 group myGroup {
 6
 7 }
 8
 9 register example {
10
11 }
12
13 }

94 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

4.1.2.2 In-depth customisation: Attributes specification

We have previously defined two special data structures called Attributes and
Attribute to support special features. One of the critics aimed at the RFS format, was that
those features (like marking a register as being a counter) were hard-coded in the
configuration XML. In RFG, the user can set attributes on all elements. The attributes must be
part of a named group, so that the special features can be logically sorted depending on their
application context.

For example, RFS required read/write rights for both software and hardware. This
specification was used when producing the Verilog output to remove the unnecessary logic.
For a register marked as non-writable by the software, the address decoder for packets
coming from the software would not feature the logic to handle a write request. This
read/write specification can differ between the hardware or the software side, which is the
reason why we need the named attribute groups.

In the register example presented previously, we introduced a shortcut attribute
specification for hardware and software. The standard API usage however expands to the
following:

Figure 4-6 Attributes group definition syntax

Supporting attributes

To simplify the notation, it is enough to follow the procedure wrapping methodology
presented in 3.3:

 The and methods wrap the calls to software hardware attributes “software”

 and . closure attributes “hardware” closure

 The and calls wrap and . rw wo addAttribute rw addAttribute ro

1 field b {
2 width 8
3 software rw
4 hardware wo
5 }

 1 field b {
 2 width 8
 3 attributes software {
 4
 5 addAttribute rw
 6
 7 }
 8 attributes hardware {
 9
10 addAttribute wo
11
12 }
13
14 }

Full notation

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 95

To ease the definition of attribute functions, the RFG API offers two procedures that
create the “attributes name closure” (for groups) and “addAttribute” (for attributes) wrapper
using a simplified interface. Some of the core supported features are listed in the following
extract:

Figure 4-7 RFG attributes group and attribute specification using wrappers

Finally, we have to consider the issue of name confusion that might occur if different
software components specify new attributes. The and both attributeFunction attributeGroup
take an input argument, which is used to name the procedures they create. Two issues have
to be considered:

1. Naming should not overlap. In the presented example, the input names lead to
global functions creation, because of the leading prefix. This is acceptable for ::
the core API attribute functions, but a library developer should be careful to keep
his functions under a namespace.

2. Attribute names cannot overlap as well. The attribute’s name which is initialised
to the input argument will therefore automatically be prefixed attributeFunction

with the name of the namespace under which the is called. attributeFunction

To be more concrete, Figure 4-8 presents the naming output for the standard core
attributes, and for an attribute defined in a namespace, showing no name overlapping occurs
although the chosen base names are identical.

Figure 4-8 Attribute naming is secured using namespaces

1 osys::rfg::attributeGroup ::software
2 osys::rfg::attributeGroup ::hardware
3
4
5 osys::rfg::attributeFunction ::rw
6 osys::rfg::attributeFunction ::wo

1 field b {
2 width 8
3 software rw
4 hardware wo
5 }

 Repository: odfi-rfg, Path: tcl/rfg.tm ; tcl/globalfunctions.tcl

1 namespace eval myLibrary {
2 osys::rfg::attributeFunction rw
3 }

 1 registerFile top {
 2
 3 register example {
 4 field a {
 5 width 12
 6 hardware {
 7 myLibrary::rw
 8 rw
 9 }
10 }
11 }
12 }

osys::rfg::rw

myLibrary::rw

 Repository: thesis
 Path: sources/4.1-RFG/attributes-definition-lib.tcl

96 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

4.1.2.3 An example

We can now write a simple complete example. Figure 4-9 presents the source code,
in which we can see that repetitions and conditions which were supported by special XML
constructs and pre-processor directives in RFS are now delegated to standard TCL control
structures.

Figure 4-9 Simple RFG example with conditional processing and a repeated register

1 osys::rfg::registerFile top {
 2
 3 group component1 {
 4
 5 register a {
 6
 7 field a {
 8 width 12
 9 software ro
10 hardware wo
11 }
12 }
13 }
14
15 if {[info exists component2]}
16
17 group component2 {
18
19 ::repeat $data_count {
20
21 register data$i {
22
23 field data {
24 width 64
25 software ro
26 hardware wo
27 }
28
29 }
30 }
31 }
32 }

Register File
 example1.tcl

Driving toolchain script
 example1-toolchain.tcl

 1 package require osys::rfg
 2
 3 ## Parameters
 4 set component2 true
 5 set data_count 10
 6
 7 ## Source the definition
 8 source example1.tcl
 9
10 ## From there on:
11 ## - Call output generators

Repository: thesis
 Path: sources/4.1-RFG/example1.tcl ; sources/4.1-RFG/example1-toolchain.tcl

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 97

4.1.3 RFS backward compatibility

An interesting property of both XML and our new programming interface is the
hierarchical nature of the input language. In other words, both input format are structured
trees. When considering switching from RFS to RFG, we want to convert from an XML format,
to a structured text output, that is to say transform the XML tree to a text tree. This task can
be easily handled using the existing and well-supported Extensible Stylesheet Language
Transformations (XSLT) technology [51]1.

4.1.4 Processing chain components

Now that we defined the basic input format and features to specify a register file, we
can call the components which will process the structured tree. Those additional software
pieces can perform various tasks like optimisation, analysis or more commonly generate
outputs. We are going to present and discuss some vital components for RFG to be usable in
a hardware design: Address Calculation for the register file elements, a Verilog HDL output,
and a documentation output example.

4.1.4.1 Hierarchical address calculation

To be able to map the register file to hardware, and let the software know how to
access the register file elements, the hierarchy must be mapped into a continuous address
space.

1 We invite the reader to consult sources and XSLT tutorials widely available on the web for
details .

Figure 4-10 RFS to RFG conversion using XSLT

 Repository: odfi-rfg, Path: xsl/rfs-to-rfg.xsl, Tool: bin/rfs_to_rfg

 Please note that this work does not make any assumption on the base register
bit width. All presented addresses refer to a generic “number of elements”.

98 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

Intuitively, one would walk the element tree using an In-Order depth first search, so
that all the leaf elements are encountered in their order of specification, and increment an
address counter by the amount of bytes occupied. We can write such a simple function, along
with an SVG view generator based on work presented in 4.2, to obtain the result presented in
Figure 4-11. The input format has been purposely kept very simple.

Figure 4-11 Simple increment address calculation

This method presents the drawback of ignoring hierarchies, which leads to a useless
consumption of resources when mapping to hardware. Indeed, a RAM represents a hierarchy
because the register file logic delegates the read/write to the physical RAM memory
component, when its calculated address range is matched. If we draw the circuit leading to
interfacing with the RAM, it appears that we have two address decoders:

 One decoder (a < b < c) to
differentiate the RAM from the
registers

 One decoder inside the RAM to
select the correct word line.

Because a top-level register file may be an aggregation of hierarchical sub register
files (as described in [50]), the same issue would be encountered in that case. A hierarchical
register file can be seen as an address range, whose precise address-to-element decoding is
delegated to another physical component (in that case another register file).

 Repository: odfi-rfg , Path: tcl/address-linear/address-linear.tm
 Repository: thesis , Path: sources/4.1-RFG/address-linear.tcl

 1 osys::rfg::registerFile top {
 2
 3 register a {
 4
 5 }
 6
 7 ramBlock c {
 8 depth 32
 9 }
10
11 register b {
12
13 }
14
15 }

Simple increment

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 99

We thus need to perform a hierarchical address calculation, where the addresses can
be efficiently tested for belonging to a sub-hierarchy, which we will call Region subsequently
as well as in the source code. We propose here to analyse the implementation of such a
calculation.

The idea is to create a base address for a region, which can be tested using only a
minimal amount of most significant bits in an address. Each region having a certain size, it will
consume a certain number of address bits: 𝐼𝐷. By rounding up the bits size to the next power
of two, we get a bit value of 1 at position (𝐼𝐷 + 1), which can be used to test the region
destination.

By repeating this process for all addressable elements in the register file definition
(registers, ram blocks or sub register files), we obtain for each an address aligned to the size,
which can be splint in two parts:

 The selector bits are the most significant bits which can be tested to match an
address to the region.

 The offset bits are the least significant bits which address the actual addressed
element in the matched region.

Two elements have a specific behaviour in front of this address definition:

 Registers are equivalent to a region containing only one element. Thus the
address is only made of selector bits, which when match only select this precise
register.

 Sub register files have no size calculated when building the hierarchy definition.

To overcome the fact that register files don’t record their size per default, the
address calculation algorithm first needs to determine all the sizes of the hierarchy’s regions
and then dispatch the addresses. This can simply be implemented using two recursion steps:
size and address, but a more elegant way to avoid recursion is to opt for a three-passes map-
reduce-dispatch algorithm:

1. Map all the hierarchical components (virtual groups are ignored) to their discrete
components (registers, rams and sub register files).

2. Reduce all hierarchical components’ mapped content to their size, and annotate.
3. Distribute addresses by just walking the tree.

Figure 4-12 Hierarchical Address for a single region

100 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

Figure 4-13 presents an example map-reduce outcome applied to a register file
definition with multiple hierarchies (the source code is available in the repository). The Rams
have a depth of 2048 bytes and the registers a width of 8 bytes.

Figure 4-13 Map-reduce sizes outcome

After the map-reduce step, all the elements are annotated with a size, and a simple
function walking through the hierarchy can apply the address calculation equations:

𝑎𝑏𝑏𝑎𝐷𝑎𝑎 = �
𝑐𝐷𝑎𝑎𝐷𝐼𝐼𝑁𝑁𝑏𝑏𝑎𝐷𝑎𝑎 + (𝑎𝑖𝑧𝐷 − 1)

𝑎𝑖𝑧𝐷 � ∗ 𝑎𝑖𝑧𝐷

𝑐𝐷𝑎𝑎𝐷𝐼𝐼𝑁𝑁𝑏𝑏𝑎𝐷𝑎𝑎 = 𝑎𝑏𝑏𝑎𝐷𝑎𝑎 + 𝑎𝑖𝑧𝐷

The two equations set the addresses then in the following way:

1. First, the size is rounded to the next valid power of two.
2. Second, the address is simply the current address incremented by 𝑎𝑖𝑧𝐷 − 1 because

addresses start at 0. The result of 𝑐𝐷𝑎𝑎𝐷𝐼𝐼𝑁𝑁𝑏𝑏𝑎𝐷𝑎𝑎 + (𝑎𝑖𝑧𝐷 − 1) represents the last
address of the region (because of the increment by the size). The divide by and
multiple operations reset the least significant bits to 0, which leads to the base
address of the region.

3. Finally, the 𝑐𝐷𝑎𝑎𝐷𝐼𝐼𝑁𝑁𝑏𝑏𝑎𝐷𝑎𝑎 for the next element is set to the address of the region,
incremented by its size, which leads to the next valid address.

4.1.4.1.1 Addressing strategies selection

The address calculation we just presented is only one possible option and does not
perform any intelligent work. The strategy adopted in the RFG API definition shows that
various strategies could be tested to optimise the address space usage, or the address
selector calculation to improve the hardware mapping output.

For example, one could think about grouping all consecutive registers into virtual
Regions only used during address calculation, so that such register groups can have a global
address selector. A hardware description language generator could then have the possibility
to create an implementation which respects nice convention for proper clock gating
detection.

Map: Hierarchies to content Reduce: sizes

Top-down

Bottom-up

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 101

4.1.4.2 Verilog HDL

For compatibility reasons, the Verilog output generator was implemented to
reproduce the RFS output format and features, which is described in [50] . However, at least
two hardware construction features, which are added per hand case-by-case to designs,
could be integrated to the generator:

 Hierarchical signal synchronisation between clock domains.
 Hierarchical signal serialisation for long wires

4.1.4.3 Documentation

A documentation output should allow a fast access to the hierarchy description and
the attributes set by all the components in the design chain. Many options can be explored
for this purpose, but we chose for a started to implement a simple html browser contained in
one file, featuring a tree view of a register file. A screenshot is presented in Figure 4-14, but
the sources for this thesis contain a generated html file ready to be opened in any web
browser in: liverun-project/src/main/webapp/rfg-doc/example_doc.html.

Figure 4-14 HTML documentation for an Extoll hardware register file (screenshot)

The virtual groups are represented by bullet nodes in the hierarchical list, while
registers are nodes featuring a special book-looking icon. A filter box on the top hides the
HTML elements whose name don’t match the user input. This allows a fast search in large
register file definitions.

102 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

4.1.4.4 XML output

An XML output is of great help to exchange a register file description in a language
agnostic format, while not loosing the structure. As presented earlier, RFS was solely based
on XML both as an input format, and as an output format (called annotated XML) where
calculated addresses would be mirrored.

For RFG, we reworked the XML to make it closely mirror the TCL data structures. This
way, the XML output provides a state of the register file structure along with all the attributes
set on the elements at a given moment. The implementation can be totally generic, and an
input path to recreate the TCL data structures from the XML could also be imagined in case
various TCL tools would need to access the RFG flow output without the possibility to
integrate correctly with each other.

Figure 4-15 presents the XML output before and after address calculation, for a very
simple register file with two registers and a RAM block.

 Repository: thesis, Path: sources/4.1-RFG/xml-output.tcl

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 103

Figure 4-15 RFG XML before and after address calculation

1 <RegisterFile name="top">
2 <Register name="a">
3 </Register>
4 <RamBlock name="b" depth="32"
>
5 </RamBlock>
6 <Register name="c">
7 </Register>
8 </RegisterFile>

1 <RegisterFile name="top">
 2 <Register name="a">
 3 <Attributes for="sw">
 4 <Attribute name="osys::…::absolute_address">
 5 0
 6 </Attribute>
 7 </Attributes>
 8 </Register>
 9 <RamBlock name="b" depth="32" >
10 <Attributes for="sw">
11 <Attribute name="osys::…::absolute_address">
12 256
13 </Attribute>
14 </Attributes>
15 </RamBlock>
16 <Register name="c">
17 <Attributes for="sw">
18 <Attribute name="osys::…::absolute_address">
19 512
20 </Attribute>
21 </Attributes>
22 </Register>
23 </RegisterFile>

After address calc.

104 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

4.1.5 Software interface for the Java Virtual Machine using Scala

The software interfaces which can be generated depend on the usage context. Some
Linux kernel interfaces and special drivers are available, mostly for the C language, as
described in [50], but have only been improved at the margin.

During this work, we tried however to find a convenient setup to access the register
file in a managed environment like the Java Virtual Machine. Java-based applications have the
great advantage to be faster to develop than low-level C/C++ applications, while offering
instant portability, which makes them a good candidate for all software developments which
don’t have strong requirements in terms of performance predictability and fancy architecture
support.

There are two main issues to solve to create a complete interface set:

 First we must be able to bind with the device, whose driver interfaces are only
available as platform specific shared libraries or through system calls.

 Secondly, a programming interface must be offered in the host language for the
user to write an application.

4.1.5.1 Simple device interfacing using mmap

In the context of Extoll hardware, multiple options are available to access register
files of various hosts using the special functional units offered by the network controller. If we
only focus on accessing the register file of a PCI device plugged in the local host, the
architecture becomes quite simple.

The software view on the register file is a simple continuous address space, where it
issues read and writes (see Figure 4-3). Therefore, the device driver only needs to map the
memory region matching the size of the register file up to the user space. A mapped memory
region is simply obtained in C as a pointer which can be manipulated using the + operator to
navigate into the memory area to the location which match the desired elements.

The memory mapping for a register file in a PCIe device is presented in Figure 4-16.
From the hardware to the user space, the memory mapping stages are:

1. The kernel driver maps inside the kernel space the I/O memory region from the
PCIe BAR which matches the register file address space. The location of this
region inside the BAR is known to the driver based on the specification of the
PCIe interface inside the hardware (hidden from picture).

2. A character device driver is loaded inside the Linux kernel. It can access the
register file memory region mapped by the kernel driver, and exposes it through
a character device, which is presented to the user space as a file.

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 105

3. A user application can open the character device file, and request to map its
content to the application’s virtual address space. This operation is called mmap.

4. The character device driver maps the kernel space memory region to the user
application virtual address space.

5. The application receives a pointer to a memory region as return value to the
mmap call. It can then navigate in this memory region and issue read and writes
by using the = operator.

6. Steps 3 to 5 can be repeated by different application instances.

4.1.5.2 Native function binding in the Java Application Space

We have shown a register file can be mapped into a user space application using a
simple mmap call. The same can be done from within an application running inside a JVM.
However, the system calls like mmap() are not available as standard Java calls, therefore the
user must make the C code accessible to a Java class. This is possible using the Java Native
Interface (JNI), which allows the implementation of some methods marked using the native
keyword, to be located in native code available as a shared library.

Using the JNI interface is not very complex, but requires the native functions to
respect a special API contract. A faster method was discovered by using the BridJ [52] library,
which hides the JNI API from the user, by automatically mapping standard C function
definitions to Java Classes. Figure 4-17 summarises the two main components of the BridJ
library:

1. At compile time, it parses C header files and generates a Java class containing the
appropriated native method definitions. The user then only needs to compile the
standard C code in a shared library.

2. At runtime, BridJ loads the previously compiled shared library, and connects its
function definitions to the Java native methods.

Figure 4-16 Register file address space mapping

106 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

Using the BridJ library, a very simple piece of C code can thus be written to expose
the register file memory region to the Java application.

4.1.5.3 Scala API for RFG

Once the device is accessible to be issued read-writes, we need to create a
programming interface for the Scala language. This interface could be generated, with classes
and method definitions for all hierarchies, but we decided to create a generic interface that
would initialise itself by reading the XML output.

For this purpose, we used the OOXOO binding library, whose functionality is
presented in 4.2.7.1, along with the created generic Register file interface in 4.4.4.

Figure 4-17 Automatic native code binding using BridJ

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 107

4.2 Hierarchical floorplanning for Integrated Circuits

nce a digital hardware design has been specified using an HDL language like Verilog
or VHDL, with the help of specific tools like the previously presented register file
generator, it can be mapped to a real physical circuit. This process is automated and

follows various steps, as presented in Figure 4-18, from code to logic function translation,
down to transistor wiring.

During this process, the tools permanently check that the resulting circuit
implementation respects the user constraints, especially in term of reachable clock frequency
for the synchronous logic. More specifically, during the Place and Route phase, the software
component called placer must determine the physical location of all the design elements.
Two main categories of such elements must be distinguished:

 Special Resources like RAM memories, Phased-Locked-Loops, input/output
Serialisers/Deserialisers etc...

 Logic gates

The logic gates typically have a size in the order of magnitude of a few transistors,
and are dispatched on the available circuit area. The special resources however are usually
bigger in size, and are therefore called macro blocks, hard macros, or macros for short.
Together with the external inputs and outputs, the macros structure the logic gates
placement depending on their locations.

Figure 4-19 illustrates this fact by showing how the logic of a circuit featuring RAM
memory macros would be dispatched, depending on the location and orientation of both
RAMs and input/outputs. Three possible options were drawn to show various considerations
during placement:

 Option A: Some area could be wasted in this configuration because of a over-usage.
 Option B: Some area could also be wasted because the macros are close to each

other, and the gap between them may not be usable for any logic.
 Option C: Here the placement and orientation of the macros is sub-optimal.

O

Figure 4-18 Digital circuit HDL technology mapping overview

108 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

For small designs with relaxed constraints, the placer can find a solution on its own.
When the design size scales up, the complexity of the task can quickly grow out of acceptable
bounds, because moving around macros impacts logic placement, and logic placement may
lead to moving around macros…

For large designs, a user defined process called floorplanning must be run.
Floorplanning, as illustrated in Figure 4-20, consists in feeding the software tool with
instructions to pre-set the physical location of part or all the structuring elements of the
circuit: Input/Outputs, macros locations, bus guides to force set of wires to be routed in a
specific area etc…

Generally, when implementing a design in a circuit, two main target technologies categories
are available:

1. Field Programmable Gate Arrays (FPGA), which are integrated circuits featuring a
vast amount of ready-to-use logic gates and macro resources. An FPGA mapping
process translates a circuit to an array of bit, which once loaded in the device
reconfigure it internally to wire the desired circuits.

Figure 4-19 RAM macro block placement options

Figure 4-20 Floorplanning places resources

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 109

2. Application Specific Integrated Circuits (ASIC), which are full-custom
manufactured integrated circuits. The mapping software must be configured with
all circuit constraints: available resources and logic gates definitions (bought from
specialized vendors) for a specific manufacturing process (example: 180nm IBM,
65nm TSCM, 28nm STM etc…), die size, input output types etc… The die area is
free to use at whish to place and wire the circuit.

In this section, we are going to describe a programming interface designed to help
floorplanning a design for an ASIC production. FPGA floorplanning is a specific case, and
usually requires little configuration, because the resources are already placed somewhere in
the integrated circuit.

110 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

4.2.1 Hierarchy-centric macro placement

The Extoll network ASIC implementation, whose architecture was briefly presented in
introduction to this chapter, represents a case for a large design. It features hundreds of RAM
memory macros, and a total of roughly 279 Million transistors. To implement such a design, it
is necessary to partition it. In other words, some of the sub-designs in the hierarchy can be
implemented concurrently, and connected together as part of an abstracter higher hierarchy
level. The partitions are then seen as huge macro circuits which can just be connected
together.

In Figure 4-21, we can see a view of the Extoll ASIC partition macros with their
interconnection scheme. On the bottom, a screenshot of the physical layout of
extoll_asic_top is shown, where each of the partitions are represented as macro areas. They
are placed on the circuit die, and wired with each other, but the detailed circuit present
inside each of the macros is hidden.

Figure 4-21 Extoll ASIC Toplevel partitions and die placement

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 111

Each of those partitions, which also contain some sub-hierarchies, are small enough
to be implemented as standalone circuits, without facing overwhelming tool runtimes.

Generally speaking, no matter which level we look at, we always face a hierarchy
tree, whose nodes represent distinct sub designs (or logical groups) which are connected with
each other, sequentially or in parallel (with some synchronisation signals or not) and this
down to the lowest level. In Figure 4-22, such a hierarchy tree is represented, in which two
kinds of nodes can be seen:

 Hierarchy nodes which contain sub-hierarchies, logic gates and macros.
 Macro nodes, which are abstract blocks and thus terminal.

Figure 4-22 Hierarchy tree with sub-hierarchies and macros

This hierarchical structured view on the design is the one that is defined in
specification documents, and also the one present in the architects’ minds.

During floorplanning, the goal is to try to find a placement configuration for all the
macros, which correctly maps to the logic structure, and can be optimised based on physical
constraints (like macro sizes). Sub-hierarchies, although they are not single discrete
components, may also be related to each other. This means that during floorplanning, the
macros have to be placed based on constraints inside their local hierarchy, but also in respect
to their parent hierarchy’s logical placement.

The global placement of all objects is thus clearly a top-down process, whilst the
placement of the single objects is a bottom-up process. Figure 4-23 shows a prepared bottom
level for hierarchy B, C, D, and two options for level A. For each B, C and D leaves, we can see
that the logical placement of the nodes was defined locally, independently from the parent
hierarchy, and then reordered in the global context.

112 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

This placement strategy can be described as being hierarchy relative, and follows two main
steps:

1. Floorplanning of all hierarchy levels based on their first-level content, each in its own
local coordinate space.

2. Resolve the absolute coordinates of all objects when the full top-down hierarchy is
known.

Figure 4-24 shows the placement coordinates of a macro in C, and of C inside A. Both
coordinate spaces for C and A are independent. The table that follows describes an example
of absolute coordinate resolution when top-down placement is run.

Hierarchy Local Coordinates Absolute Coordinates
A (0,0) (0,0)

C (in A) (20,10) (20,10)
C (0,0) (20,10)

MACRO (in C) (10,10) (30,20)

Figure 4-23 Placement options for a hierarchy tree

Figure 4-24 Hierarchies floorplanning in separate coordinate spaces

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 113

4.2.2 Motivation for a generic programming interface

Concretely, the previously described floorplanning process is driven by an input
passed to the software environment. This input is typically a TCL script, which issues API calls
provided by the tool environment to place objects.

All tools have their own set of programming interfaces, with more or less adequate
functionalities to create groups of objects and help define placement. Sometimes those
helper functions are not very useful, and make working with the software environment
difficult and time consuming. Moreover, the design must already be in a quite advanced
stage, so that the environment sees all the final macros that will have to be placed.

Additionally, if multiple alternative design solutions are explored, they have to be
brought far enough in the implementation process so that floorplanning can be done.

Based on the hierarchical placement concept we just presented, we can say that
there are not reasons for a floorplanning process to be concealed to the programming
interface of any specific vendor software. The placement of objects can be specified in an
abstract way, and then outputted to the target environment by mean of a configuration file,
direct API calls or anything else required.

In 4.2.3 we present a novel, generic and environment-agnostic programming
interface for objects floorplanning. The implementation we propose targets the TCL language,
and relies on the EDSL design rules presented in 3.3.

114 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

4.2.3 A scene graph programming interface

We introduced in 4.2.1 the basic requirements of floorplanning. We can now
reformulate the concept using a more generic semantic, by saying that we are trying to
model and layout a hierarchy of objects in a two dimensional coordinates space.

Scene graphs are a well known modelling concept often used for the rendering of 3D
scenes, as described for example in [53] or [54]. The name “scene graph” does not refer to
any specific programming standard, or existing data representation specification, but more
generally to the idea of using a tree of nodes to model an object hierarchy. Parent nodes are
container for children nodes and properties applied to those containers can in turn affect the
children. Applied to a generic scene representation as presented in in Figure 4-25, hiding a
hierarchy level would for example mean hiding all the children.

The similarities between common scene-graph applications and the floorplanning
problem presented in 4.2.1 lead us to borrowing the semantic of scene graphs to develop our
programming interface. The software architecture follows three main axes, which we are
going to be detailed in the next sub-sections:

1. The properties of each node, as required for floorplanning.
2. The scene graph tree nodes definition.
3. The integration of the scene graph programming interface into specific target

environments.

4.2.3.1 Floorplanning properties requirements

Each node in the scene graph must have a set of properties to enable object
placement calculation. The first two natural properties which come to mind are position and
size (width and height) of the nodes. This is true for any kind of nodes, may they be pure
container (hierarchy levels) or macro blocks. The size of a pure container will vary depending
on its contents’ positions and sizes, while the size of a macro is an immutable constant.

Figure 4-25 3D Scene representation using a scene graph

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 115

 Figure 4-26 shows how the shape of the container B (from Figure 4-23) changes to
reflect a modification in its content’s positioning.

The third property is the orientation for macro blocks. Indeed, they have input and
output connections spread on their sides, and thus must be oriented during floorplanning to
be adapted to the orientation of their neighbours. For containers, the orientation is not
considered relevant, as it would require moving the content around.

Depending on the target application, the supported orientation values applicable to a
macro may vary. The scene graph programming interface however defines a set of standard
values:

 R0: The standard macro shape (no rotation)
 R90: A rotation of 90 degrees counter-clock-wise
 R180: A rotation of 180 degrees counter-clock-wise
 R270: A rotation of 270 degrees counter-clock-wise
 MX: Mirror over the X axe
 MX90: MX then R90
 MY: Mirror over the X axe
 MY90: MY then R90

Figure 4-26 Pure container B shape variation based on its content

Figure 4-27 Orientation options for macros

116 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

4.2.3.2 Abstract API in TCL

The scene graph programming in TCL was designed as an embedded language for the
TCL language, as presented in 3.3. It supports the requirements we have defined so far:

 Scene graph construction: Create a tree of nodes in memory
 Floorplanning properties: Nodes must define position (x,y), size (width and

height) and orientation.
 Coordinate space resolution: Nodes have an Absolute position property, which is

resolved by the scene graph

4.2.3.2.1 Abstract class hierarchy

The base domain specific language for this API is limited. The reason is that we are
focusing here on defining generic object placement behaviour. The macros, which are the
physical elements in the scene graph, have only been described in an abstract way so far.

We cannot at the moment define their actual implementation in a class hierarchy,
because their definition must be provided by an interface layer to the application which is
targeted. All what can be said is that they are Nodes in the tree.

This is why the final user-ready domain specific language is partially defined here for
the generic scene graph behaviour, and partially at the application layer level. A simple
example is presented in 4.2.3.3.1.

Figure 4-28 represents the base scene graph Node class, and the container node type
called Group. A Group owns a relation to its content, and a Node to its parent container. The
application interface layer shows an inheritance example that could be provided by an
application-specific programming interface based on the generic scene graph API.

The source code is a good reference for the implementation details, concrete
application are described later.

Figure 4-28 Base scene graph class hierarchy

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 117

4.2.3.2.2 Container shape and orientation

The nodes representing macros have an orientation parameter. Additionally, the
container nodes derive their shape from their first-level content. Depending on their
orientation, the macro nodes have thus a different shape in the same coordinate system.

To avoid forcing the container nodes to explicitly keep track of their content’s
orientation, which would increase the complexity of the implementation, it has been decided
to let the Nodes return a size which depends on the orientation.

In Figure 4-29, the Node instance representing the macro oriented to R90 returns a
view of its shape by inverting its initial width and height. The default contract for the Node
class therefore specifies two special methods called R0Width and R0Height, and
automatically adapts the returned width and height based on the orientation.

 Repository: odfi-dev-tcl-scenegraph , Path: tcl/scenegraph/scenegraph-1.0.0.tm

Figure 4-29 Size and orientation methods contract

118 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

4.2.3.2.3 Absolute coordinates resolution

Finally, resolving the absolute coordinates of objects is a simple operation which is
implemented using the bottom-up recursive function 𝑝𝐷𝑎𝑖𝐼𝑖𝐷𝐼() = 𝑝𝐷𝑎𝑖𝐼𝑖𝐷𝐼(𝑝𝑎𝑎𝐷𝐼𝐼) +
{𝑥,𝑏}.

Figure 4-30 illustrates the successive absolute position resolution for one of the
macro under the D hierarchy level from Figure 4-22. The 𝑎𝐷𝑎{𝑥,𝑏} expression refers to the
absolute coordinate of the nodes, which is obtained by a recursive call issued from the child
node. Both the macro and the A containers have a predefined position: The macro element
because it is positioned in the relative coordinate space of its parent, and A for it is the top
container and thus does not have a parent. It is the origin.

To improve performances, the absolute position is cached for each node. Care must
be taken by the user or a specialized application layer to invalidate the value of the caches
absolute position if a change in local position or shape occurs. For example, changing the
position of a container node must lead to invalidating the absolute positions of the complete
sub-tree.

4.2.3.3 Application interface

The scene graph API is application-agnostic, as mentioned in 4.2.3.2. This means that
no input-output connection to produce any result is provided. We have indeed so far only
presented the base functions to place objects in a coordinate space, but not how to actually
floorplan any macro on an integrated circuit.

An application interface layer is required to construct node instances which can be
floorplanned using the scene graph API, and commit the results to the application. Figure
4-31 presents the general concept. This part of the application’s design only consists in
defining subclasses of Node and Group, if needed, and implement application-specific
behaviour. It is therefore purely classical software design.

Figure 4-30 Recursive absolute position resolution

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 119

4.2.3.3.1 Example: Floorplan prototyping using Library Exchange Format files

Now that we have covered the main aspects of the floorplanning programming
interface, we can illustrate our purpose with a small example, which reproduces the
application flow of Figure 4-31. The source code with annotated flow is presented in Figure
4-32 and features four major steps:

Input Data

First, a macro definition is going to be loaded from a Library Exchange Format (LEF)
file. LEF files are industry standard text files which hold layout information about physical
components. The LEF file we are using contains a named macro definition, associated with its
R0 width and height. The size of the macro is 333.42x 105.28 microns.

Create application data

Secondly, a real application is simulated by creating 4 instances of a Node class which
represent instances of macros matching the description extracted from the LEF file. The class
name is HardMacro.

Layout

 The node set that was created before can be floorplanned. To illustrate how
containers work, the fours macros are split into two groups. Both groups are placed on top of
each other, and each macro next to each other in their respective groups. Some spacing is
added when positioning for output clarity.

Output

As we are not really floorplanning any real integrated circuit, we can just output a
scalable vector graphic XML file, which will mirror the results.

Figure 4-31 Application interface and scene graph interfacing

120 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

Figure 4-32 Simple Floorplanning application

1 ## Load LEF File

 2 set lef [::new Lef #auto "lib.lef"]

 3
 4 ## Search macro
 5 set macro [$lef getMacro "ExampleMacro"]
 6
 7 ## Create instances
 8 set instances {}
 9 ::repeat 4 {
10 lappend instances [$macro toHardMacro]
11 }
12
13 ## Creat top container
14 odfi::scenegraph::newGroup top {
15
16 ## Create two groups
17 ## Each has two macros
18 addGroup "A" {
19
20 add [lindex $instances 0]
21 add [lindex $instances 1]
22
23 ## Set second macro right to first
24 [member 1] right [[member 0] getWidth]
25 [member 1] right 5
26 }
27
28 addGroup "B" {
29
30 add [lindex $instances 2]
31 add [lindex $instances 3]
32
33 ## Set second macro right to first
34 [member 1] right [[member 0] getWidth]
35 [member 1] right 5
36 }
37
38 ## Set second group above first
39 [member 1] up [[member 0] getHeight]
40 [member 1] up 5
41 }

B

Input

Layout

Output

Data

0 1

2 3

A

0 1

2 3

A

B

A

B

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 121

To close the example, we can have a look at the output generation code to show the usage of
the automatic absolute coordinates calculation.

Figure 4-33 Example application SVG output

In Figure 4-33, we can see how the automatic size and absolute positions were
derived from the relative floorplanning of each hierarchy level in the previous step:

1. The main <svg> element is sized using the top container and getWidth getHeight
methods, which return a size based on the content layout.

2. The groups are not considered (filtered by line 10) because we are interested in the
final placement of the macros.

3. The <rect> elements which represent the macros must be placed on the picture at
their exact global location. Therefore the and methods getAbsoluteX getAbsoluteY
are used.

To sum-up, we have presented here a simple methodology to prototype
floorplanning of macros. By using an adequate application interface, it is possible to keep the
same layout source code, and replace the input/output parts to interface with Integrated
Circuit implementation software.

1 ## Output SVG
 2 set svg "<svg
 3 xmlns=\"http://www.w3.org/2000/svg\"
 4 version=\"1.1\"
 5 width=\"[top getWidth]\"
 6 height=\"[top getHeight]\">"
 7
 8 ## Only output macros
 9 top eachRecursive {
10 if {[$it isa HardMacro]} {
11 set svg "$svg
12 <rect x=\"[$it getAbsoluteX]\"
13 y=\"[$it getAbsoluteY]\"
14 width=\"[$it getWidth]\"
15 height=\"[$it getHeight]\"
16 fill=\"gray\"/>"
17 }
18 }
19
20 ## Write
21 set svg "$svg</svg>"
22 odfi::files::writeToFile "lef-example.svg" $svg

122 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

4.2.4 Generic building blocks for floorplanning

The presented floorplanning programming interface is generic for all applications.
This means that it is possible to write some functions to layout objects in a certain way (row,
column, grid etc…), and reuse them.

To do so, there are not special rules to follow and the user is free to define its own
methodology. However a small set of functions have been introduced in the core API to
simplify this process. It features two aspects:

1. Defining a layout function: A name and an implementation must be provided. The
API passes a reference to the container which must be processed, and a $group

 reference to a value map containing some parameters (like spacing, $contraints
or special function features selectors).

2. Calling a layout function: The user can use the “layout name constraints” method
available on the Group class and pass it a name matching a previously defined
layout function, along with a values list as constraints.

Figure 4-34 schematises a layout function use for the floorplanning example from
Figure 4-32 and uses a Grid layout function to structure the four macros. Two constraints are
passed:

1. The rows constraint orders objects on two rows. The function creates as many
columns as required (our example is a corner case where two columns could also
have been requested for the same result).

2. The spacing constraint adds spacing in all dimensions by adapting the object’s
positions.

Finally, the definition and usage of layout functions is illustrated in Figure 4-35 which
shows a part of the code from 4.2.3.3.1 adapted to just add the macros to the top-level group
and call the flowGrid function. Some more layout functions like column, row, mirrorX, mirrorY
are available and can be consulted in the library’s project.

 Repository: odfi-dev-tcl-scenegraph ,
 Path: tcl/scenegraph/layout-functions-1.0.0.tm

Figure 4-34 Objects floorplanning using a layout function

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 123

Figure 4-35 Definition and Usage of layout functions

 1 odfi::scenegraph::newLayout "flowGrid" {
 2
 3 ## Get constraints
 4 set rows [$constraints getInt rows]
 5 set spacing [$constraints getInt spacing]
 6
 7 ## Work on $group variable
 8 $group each {
 9
10 }
11
12 }

 1 ## Creat top container
 2 odfi::scenegraph::newGroup top {
 3
 4 ## Add All macros
 5 add $instances
 6
 7 ## Automatic layout
 8 layout flowGrid {
 9 spacing 5
10 rows 2
11 }
12 }

call

definition

124 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

4.2.5 Generic data representation using SVG

SVG pictures are an example of an application candidate to be integrated with the
scene graph API. SVG was previously used in this work to produce graphical outputs, quite
often by producing the XML manually like in Figure 4-33.

A basic SVG language was presented in 3.3, which was integrated in the scene graph
API class hierarchy. The layout functions presented in 4.2.4 can thus be used to place
graphical elements on the picture.

The scene graph integration details can be consulted in the source code, but to
illustrate the API usage we can refine once again the macros floorplanning example from
4.2.3.3.1. Figure 4-36 presents new the SVG picture production from Figure 4-33 converted to
the SVG language usage.

Figure 4-36 Simple SVG scene graph integration example

 1 ## Output SVG
 2 odfi::scenegraph::svg::createSvg svgview is {
 3
 4 ## Only output macros
 5 ::top eachRecursive {
 6
 7 if {[$it isa HardMacro]} {
 8
 9 addRect {
10 setX [$it getAbsoluteX]
11 setY [$it getAbsoluteY]
12 width [$it getWidth]
13 height [$it getHeight]
14 fill gray
15 }
16 }
17 }
18
19 }

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 125

4.2.6 Real placement in Cadence Encounter

The Cadence Encounter tool is an Integrated Circuit physical implementation
software environment for digital designs (Figure 4-18 Place and Route). Floorplanning of ICs
can be done using this application.

The presented library was used in Encounter to perform floorplanning of the Extoll’s
IC partitions. Not only SRAM memory macros were placed, but also other blocks required for
the top-level integration like:

1. Area I/O cells groups in I/O Rows.
2. Power I/O cells.
3. ElectroStatic Discharge (ESD) protection cells, etc…

Some more structures could be supported, but given the size of the Extoll IC, these
already represent multiple hundreds of structures across the various partitions, the interface
was not used further.

To give an example, Figure 4-37 shows the RAM placement of the Extoll Crossbar
from Figure 4-21. The crossbar contains a certain number of {Input + Output} port tuples
(eleven in the Extoll ASIC) connected together through an arbiter. All the structures are
identical, only repeated according to the number of IO port the crossbar features. The
floorplanning for the crossbar is easy to implement using the scene graph API, and features
two steps:

1. Create a function that performs the floorplanning of an input port + output port
group. This can be prototyped and multiple alternatives can be tested.

2. Create the Top level crossbar Floorplan group, which creates the input + output
port groups, pass them to the floorplanning function, and then places the groups
on the partition area.

126 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

Figure 4-37 Extoll crossbar floorplanning example

Additionally, we can note that the defined Column, Row and Mirror floorplanning
functions can be defined in a generic way. The four right and IO groups were mirrored
because they are structured the same way as the ones on the left, but the external pins are
on the right. We could also have written the IO group Floorplan respective to the right side,
and applied the mirror function to the left ports.

IO Port

Mirrored IO Port

Column

Column

7 IOs 4 IOs

Row

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 127

4.2.6.1 Application interface

The Cadence Encounter application interface exactly follows the description provided
in 4.2.3.3. It provides two main interfaces:

 A set of Node and Group subclasses providing interfacing to the various object
types encountered. For example, the EncounterFloorplan class inherits the Group
generic node type, and returns as R0Width and R0Height the size of the die
configured in the Encounter design.

 A special applyToEncounter function which walks the scene graph tree and places
the physical elements at their absolute locations.

Additionally, the floorplanning library and its dependencies must be loaded in the
Encounter’s TCL interpreter. Some details are provided in Appendix A.

4.2.7 Outlook

In this section we presented a generic 2D scene layout programming interface. It
offers the user the advantage of hierarchy-level relative placement for objects, which enables
coordinates calculation to be independent from the final absolute coordinate space. The
absolute coordinates are automatically resolved only when required.

Two main applications were found so far: Floorplanning of macro blocks in ASIC
designs and SVG drawing. Both can be used in the context of digital hardware design, either
for real implementation, or for prototyping purpose.

However, floorplanning prototyping using an SVG picture is only convenient if the
digital design input (Verilog or VDHL format for example) can be parsed or read to feed the
prototyping environment with correct information about macro blocks. This was not the case
in the context of the Extoll project, so SVG was only used in very early prototyping phase in
the same way as presented in 4.2.3.3.1.

4.2.7.1 Multiple tree-view support

By looking at the macros floorplanning prototyping example from 4.2.3.3.1, it is
interesting to note that we are dealing with two trees representing the same data. Indeed,
the macros floorplanning was performed, and then an SVG tree was produced by merely only
translating HardMacro objects to SVG Rect ones.

This example shows that it would be interesting to develop a methodology to
improve the integration of multiple application views inside the scene graph API. In our case,
the two application views could be for example:

128 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

 An SVG view to be used when prototyping
 An Encounter node view to be used when committing the macros tree into a real

Physical Implementation software

This issue can be solved in multiple ways, which might also depend on the programming
language capabilities. We through about three different approaches which could be explored
and even combined:

 Tree transformation: XML transformation technologies like XSLT [51] define the
concept of tree-to-tree transformations. A usage example was presented in 4.1.3
to convert an XML document to a TCL EDSL script. A similar programing interface
could be developed to define transformation scenarios. This kind of
transformation can be very generic and does not deeply interacts with the source
tree, but yields separate tree instances, which can bring confusion to the
developer.

 Virtual Nodes: A “virtual node” would be a simple generic node, which would
hold a set of application nodes without being a group. The generic scene graph
interface, like placement and orientation would be forwarded to the contained
node, so that floorplanning can be done in a classical way. A specific application
could then walk the tree and not see the virtual nodes, but one of their contained
application node based on a selection heuristic.

 Class mixins: Section 3.3.2 introduced the concept of class mixins to add

functionality to classes outside of their initial definition. This could also be a way
for applications to add their required properties and methods to the Node or
Group classes.

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 129

4.3 Part description language

nce an integrated circuit has been manufactured, it is packaged to be physically
soldered on a printed circuit board (PCB). This packaged circuit is usually called a
Part and is at the boundary between the internal IC and the external world. A part

description should, for each input or output pin, include various information, which are used
by various tools like PCB design, on board signal trace analyses or documentation generator.
Examples of such useful data are: physical pin location on the package, logical grouping of
pins, input or output, buffer strength and type for a pin etc…

There are a lot of integrated circuit vendors, as well as tools for PCB design and all
kind of analysis, but no flexible solution is available to access the raw data describing a
package. Some vendors have their own internal features to ease part definition importing in
their software chain, but it is usually limited to the set of provided circuits, and not really
extensible. In the end, the designers often end-up reading a datasheet and importing the
required data per hand in the target software environment.

In this section, we present a novel part definition language for TCL, which follows the
same definition methodology as the languages presented in 4.1 and 4.2. It integrates in the
design flow methodology by allowing to fully specifying a part in a tool-agnostic format. A few
use cases that have been encountered are introduced to illustrate the part definition reuse
depending on the target application.

O

Figure 4-38 Part definition with Ball Grid Array (BGA) view

130 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

4.3.1 Language description

The part language is similar to the register file generator one. It is simpler and only
consists in a Part class definition which contains some Pin definitions.

Pin definitions require a name and a location which has not already been set on
another pin. This requirement was defined to avoid unnoticed wrong locations in the part file.
The Location is defined using a JEDEC standard Ball Grid Array naming convention.

4.3.1.1 Attributes

To support various possible outputs or tool integration, the same strategy was
adopted as for the register file generator (4.1). Most pin properties of are supported by
attributes.

Figure 4-40 Input/Output Pin definition using attributes

Figure 4-39 Part language class hierarchy

 Repository: thesis, Path: sources/4.3-Package/part-io.tcl

 1 part MyPart {
 2
 3 pin A {
 4 ::attr::input
 5 }
 6
 7 pin B {
 8 ::attr::output
 9 }
10
11 }

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 131

4.3.1.2 Abstraction level improvement example: Differential Pairs

We introduced in 3.3.2.2.1 a methodology to add abstraction levels to an EDSL. The
part language presents a nice example for this in the case of differential signal pairs or
DiffPair for short. A DiffPair is a tuple of two pins which transmit or receive one signal using
two opposite signals. They usually share the same name, with a character token appended to
it, like “_N” or “_P”, to differentiate between both positive and negative signals. Additionally,
it is useful to annotate both pins as being part of a differential signal, along with a reference
to the opposite pin name.

Figure 4-41 presents the usage of such a DiffPair object procedure, to create a DATA
differential pair, while a CLOCK differential is created per hand.

Figure 4-41 DiffPair abstraction level improvement

4.3.1.3 Output generator rules

The core programming interface defines a common BaseOutputGenerator class which
should be inherited by software components which are producing specialised outputs from a
part definition. This is not a compulsory requirement, but the BaseOutputGenerator interface
is a common ground used by the tool to detect available generators.

 Repository: thesis, Path: sources/4.3-Package/part-diffpair.tcl

 1 odfi::dev::hw::package::part MyPart {
 2
 3 diffPair DATA B1 B2 {
 4 ::attr::output
 5 }
 6

 7 pin {CLK_P @A2} {

 8 ::attr::input
 9 ::attr::differential CLK_N
10 }
11

12 pin {CLK_N @A1} {

13 ::attr::input
14 ::attr::differential CLK_P
15 }
16
17 }

132 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

Various parts may have various additional configuration parameters for output
generators. It has been decided to delegate the generators’ configurations to additional files,
to allow a user to write multiple rule files for the generator, and select the desired one at
runtime. A rule file holds on each line a parameter value for some pins. The lines thus follow
the syntax:

𝑅𝑁𝑁𝐺𝑁𝑁𝑋𝑃 <, > 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 < 𝑎𝑝𝑎𝑐𝐷 > 𝑉𝑁𝑁𝐿𝑈𝑁𝑁

 REGEXP: Matches the pins to which the parameter must apply
 NAME: The parameter name
 VALUE: The parameter value

Some concrete examples are provided in 4.3.3.1 and 4.3.3.2.

4.3.2 Hardware description language (HDL) integration scenarios

The pins defined in a part definition are the same as the input and output wires
defined on the top level hardware design entry language (HDL, Verilog or VHDL for example).
It is thus a good idea to define them in only the HDL or the part file.

However, the part file can be used as an exchange format, so it is better to keep it
consistent in one file, instead of delivering it with an HDL file to be parsed. Moreover, it can
be relevant to generate the HDL input/output wires on the fly based on the part file data. The
following example illustrates a way to better integrate part definition and HDL design
language. Figure 4-42 presents a Verilog module source file whose input/output definition is
generated on the fly by reading a part file.

 Repository: thesis, Path: sources/4.3-Package/rtl-pin-import.v ; part-pin-source.tcl

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 133

Figure 4-42 Verilog embedded input output on-the-fly generation

The TCL code embedded into the file is executed and replaced by its resulting output
when passing this file to the embedded stream special function provided in the set of libraries
published with this work. A special executable tool called “odfi_tcl_embedded” can be used to
convert a local file.

4.3.3 Tool integration examples

4.3.3.1 SVG View

Using the SVG scene graph language presented in 4.2.5, it is easy to generate an SVG
view for a part. The generator creates an SVG scene graph tree, and structures the view parts
as presented in Figure 4-43:

 A Row on top for the column names
 A flowGrid for the pins array and the row names

o The list of pins is sorted by location, at each row begin a row name text
element is added

o The Flow grid layout function is called with a number of columns being
the width of the pins array plus one.

 A column to place the pins and row names array under the column names

1 module example (
 2 <%
 3 set part [source part-pin-source.tcl]
 4

 5 odfi::list::transform [$part getPins] {

 6 if {[$it hasAttribute global.output]} {

 7 return "output wire [$it name]"
 8 } else {
 9 return "input wire [$it name]"
10 }
11
12 } -concat ",\n"
13
14 %>
15);
16 endmodule;

Embedded TCL

Part File

1 module example (
2 output wire A,
3 input wire B
4);
5 endmodule;

134 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

The SVG generator also supports some rules as described in 4.3.1.3. Supported parameters
are for example:

 color : a standard SVG color can be set to change the output color of the pin.
 shape: values like rect, circle or triangle can be set to change the pin graphical

representation.

Two examples of SVG outputs are:

 A very simple 4 pins part example can be tested on the
LiveRun website (see Appendix A script is: sources/4.3-
Package/part-to-svg.tcl), and produces the result shown on
the right.

 Figure 4-44 presents a more evolved output customised for documentation purpose
was created for the Extoll integrated circuit,

Figure 4-43 SVG generator scene graph layout

http://www.idyria.com/~rleys/ThesisLive/index.view

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 135

Figure 4-44 SVG view example for the Extoll ASIC (~3000 balls)

136 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

4.3.3.2 Cadence capture integration

Cadence Capture Design entry is a Printed Circuit Board (PCB) design tool. A PCB is
engineered in two phases:

 First the circuit schematic must be defined, i.e. all the connexions between parts.
 Afterwards, the schematic goes in layout mode, where the signals are physically

traced on the physical view of the circuit board.

The part language library can be loaded inside the Cadence Capture Design software
to assist the user when importing data into the software. Indeed, all pins of a part must be
created per hand in the database if the part is new to the environment. Using the part
language, we wrote an import function which, using the internal programming interface of
the tool creates the part definition in the schematic database automatically.

As Illustrated in Figure 4-45, upon loading, a small extra TCL graphical interface pops-
up and offers the user to open a file for importing. When imported, the new part appears in
the database, and its pins definition can be seen in the part schematic view.

Figure 4-45 Part file import in capture

4.4-Package/part-capture.part

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 137

4.3.3.2.1 Large part support: usage example of the generic group attribute

The part import function is implemented as a generator and supports rules
definitions as presented in 4.3.1.3. However, we found an interesting usage for an attribute
called “group”, which is defined in the core programming interface. It is generally a good idea
to provide grouping information on the pins which can be used as a sorting key for the output
generators.

In Capture, a part is called a symbol, and if it is large, it is divided in sub-symbols
which each contain a certain number of pins. Each of those sub-symbols must be placed
individually on the schematic, and thus should preferably contain pins which are related to
each other. The import generator can translate the group attribute to the correct input data
for Capture to create matching sub-symbols.

Figure 4-46 shows a simple part definition with group attributes, and the two sub-
symbols yielded in the capture symbol library. The same generic group attribute could be for
example used by a documentation generator to sort the pins in a table.

Figure 4-46 Automatic sub-symbol assignment from generic group attribute

 1 part MyPart2 {
 2

 3 pin {A @A1} {

 4 ::attr::input
 5 ::attr::group G1
 6 }
 7

 8 pin {B @B1} {

 9 ::attr::output
10 ::attr::group G1
11 }
12

13 pin {C @A2} {

14 ::attr::input
15 ::attr::group G2
16 }
17

18 pin {D @B2} {

19 ::attr::output
20 ::attr::group G2
21 }
22 }

138 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

4.3.4 Outlook and integration in actual work

The presented part language has the specificity of being at the boundary of design flows. It
can provide useful data along two axes:

 Transversal as exchange vector between users of a defined part: tools, business and
engineering partners etc…

 Downward to integrate with the part engineering design flow itself.

There would be a great advantage for business entities to providing TCL part files to
each existing part. Its simple and clear syntax make it close to a simple text file, and its
dynamic aspect enables a tight integration in tool chains: one simply have to source the file,
and start coding to extract the useful information relevant to a specific use case.

On the downward axe, a TCL part definition format was already used in combination
with the Floorplanning API presented in 4.2 for the implementation of the Extoll ASIC. It was
generated from a script and used to automatically position the integrated circuit bumps
based on the part pins positions (the bumps are connecting the die to the part package). For
a future integrated circuit design, it would be interesting to write a part file yielding the
correct pins, and use it directly with the Floorplanning API and any other design tool, instead
of generating the same part description in multiple different formats for each target.

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 139

4.4 OOXOO: A dynamic XML data binding interface

o exchange data between actors of a software architecture, may they run concurrently
or be part of a process chain, Extensible Markup Language (XML) [55] documents are
widely used, both because of their structural aspects (we speak of XML trees) and the

freedom of elements definition which is given to the software architects. Such an exchange
format is used by the register file generator tool described in 4.1 to enable interfacing
between high-level software and the described hardware registers.

This section presents a novel and highly flexible data binding architecture for
structured data formats like XML, on top of which, a set of simple components have been
developed to efficiently bind a register file interface into the application space (see 4.4.4).

4.4.1 Data binding for XML

Any software developer dealing with static data storage, will usually be confronted
with the implementation of a functional layer to cope with the bidirectional translation
between application-oriented data structures and the storage. These processes are called
marshalling and un-marshalling. The storage backend can take the form of binary files,
structured trees like XML, or very commonly a relational database engine like MySQL, as
illustrated in Figure 4-47.

Figure 4-47 Simple class translated to XML or a Relational Database table

Typically, this translation process involves:

 Defining the application data structures
 Defining the storage format
 Driving the data engine the store or retrieve data
 Optimizing performance, by caching objects for example
 Migrating older data to newer versions

In the context of a typed introspective runtime, like the Java Virtual Machine (JVM)
offers, (un)marshalling can be greatly lightened by delegating the data format definition and
interfacing with the storage engine to an automatic binding layer, for example called
Object/Relational mapping (ORM) in the case of a relational database.

T

1 class A {
2
3 var foo : Int
4 var bar : String
5 }

A
foo : INT bar : VARCHAR(…)

1

SQL

XML

140 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

In Figure 4-47 for the SQL storage case, such an ORM layer would automatically:

 Create the Database table
 Generate the Queries to retrieve or update data from/to the tables
 Create and populate objects upon user requests
 Update the table based on object update or insertion upon user request
 Optionally Maintain an object cache to optimise data retrieval

In Java, the most popular implementation is the Apache Foundation Hibernate
project [56] , but concurrent ones exist from a wide range of actors (Oracle TopLink, Eclipse
EclipseLink etc…).

Object-Relation mapping allows recursive imbrication of objects (A can contain B,
once or multiple times), although it then maps to flattened tables. Intuitively, we can see that
XML documents implicitly offer data structure hierarchies, we just need to be able to
generate an XML tree for a given data type, and place it in its container’s tree, as illustrated in
Figure 4-48.

Figure 4-48 Data structure composition example

4.4.1.1 Automatic data model generation and validation

An issue with XML documents is the definition of data types present in the tree, as
data nodes only are represented by strings (TEXT_NODE in XML semantic). In a relational
database however, the user must explicitly set the type of each table column (VARCHAR,
TEXT, INT etc…), as was presented previously in Figure 4-48.

To palliate to this issue, an XML data modelling standard called XML Schema [5][6]
was created around 2001. It is itself an XML document which describes the structure that a
specific type of XML documents must conform to. It defines for example:

 1 class Register {
 2
 3 var name : String
 4 var address : Long
 5
 6 var field : Field
 7
 8 }
 9 class Field {
10 var name : String
11 var offset : Int
12 var size : Int
13 }

1 <Register name="..." address="...">
2 <Field
3 name="..." offset="..."
4 size="..."/>
5 </Register>

Register
name :

VARCHAR(…)
address :

LONG
field_id:
BIGINT

Field
Id: BIGINT name : VARCHAR(…) …

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 141

 Available Elements
 Composition relations between elements
 Type inheritance
 Simple types for attributes and non structural elements (int, long, float,string

etc…)

Using XML Schema, our previous example with Register and Field can be rewritten as
presented in Example 4-1 (some data structures have been omitted for concision):

This document would be used when parsing XML to validate it against the expected
format, and perform (un)marshalling, as depicted in Figure 4-49. Moreover, it allows
generating the required data structures for the developer by compiling the Schema to code.

1 <?xml version="1.0" encoding="UTF-8"?>
 2 <schema xmlns="http://www.w3.org/2001/XMLSchema" xmlns:tns="…"
 3 targetNamespace="…">
 4
 5 <element name="Register">
 6 <complexType>
 7 <sequence>
 8 <element ref="tns:Field"></element>
 9 </sequence>
10 <attribute name="name" type="string"></attribute>
11 </complexType>
12 </element>
13
14 <element name="Field">
15 <complexType>
16 <attribute name="size" type="int"></attribute>
17 </complexType
18 </element>
19
20 </schema>

Example 4-1 Register and Field XML Schema example

Figure 4-49 XML marshalling/unmarshalling and validation scheme

142 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

4.4.1.2 Flat binding

The historical reference implementation for XML data binding in Java is the Java
Architecture for XML binding (JAXB) [59] . In its first version released in 2003, it required the
user to follow a precise workflow:

1. Write an XML Schema
2. Generate code using an XML Schema compiler (In that case a lot of interfaces and

classes)
3. Parse/Generate XML in application using generated data structures

Back then, the generated code was quite complex, and there was no other choice
than starting with writing XML Schema. This approach was however not very efficient for the
user because of XML schema verbosity, and considering that most applications start with a
very limited number of data structures, it would have been more convenient to just be able
to write simple classes, and have them mapped back and forth from/to XML until the feature
set is stable enough. Moreover, during development, XML validation is not critical because
the application runs in a safe environment, where actors keep data consistent.

This is how the first version of OOXOO was designed in 2005 (as a student project) to
palliate those issues. The main Idea for the data binding was to simply use the newly
introduced Java Annotations (starting with Java 1.5), which allows embedding class metadata
in the byte code. These metadata were used to mark the class fields that should be
considered in XML. This approach has been used by JAXB from its version 2.0, released as a
standard in 2006 [60] , as presented in Figure 4-50.

Figure 4-50 Java Annotations for XML binding

Some other implementers, like XMLBeans [61] or JibX [62], however kept relying on
the XML Schema compiler workflow, sometimes even adding extra XML to object mapping
documents in the case of JibX.

1 @XmlRootElement
 2 class Car {
 3
 4 @XmlElement
 5 var model : String
 6
 7 @XmlAttribute
 8 var color : Int
 9
10 // Not relevant for XML marshalling
11 var foo : String
12 }

1 <Car color="...">
2 <model>...</model>
3 </Car>

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 143

Benchmarking of the various binding implementations is not a very well covered field,
because of the lack of a precise framework for the implementations. Even if JAXB is a Java
Specification, it is not very well followed (OOXOO itself does not respect any standard), and
as usually (un)marshalled data sets tend to be quite small, they don’t really impact
application performances that much in their usage, making it a poor criterion in the design
space.

4.4.1.3 Application Binding

 We have seen how XML binding can help map data to objects in the application
space. We can raise a concern about how those objects are to be used by which components
(graphical user interface, networked data exchange etc…). Two main questions appear then:

1. Does the data structure diverge from its target usage?
o Example: The Flat XML is used to build/restore a Map

2. How do upper application layers interact with the data objects?
o Example: We want to edit the data in a Graphical User Interface (GUI)

This concept is called application binding, or functional binding. The first point is
usually solved by the features of the chosen binding library, typically by providing special type
handlers to modify the marshalling behaviour, but requires specific configuration.

The second point can be considered out of scope, the software architects being
responsible for correct read-modify-update of data in the application context. However,
boiler plate code which just handles data copy and validation between types that are
incompatible with each other, conversions (etc…) is difficult to avoid, and complex scenarios
difficult to test.

Can we then handle this so called Application binding in a generic way that could
provide an answer to both previous statements? The design of OOXOO v2 (Java
implementation) and OOXOO v3 (Scala implementation) proposes a solution by using a
dynamic binding approach, instead of a simple flat binding.

144 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

4.4.2 Dynamic hierarchy

When using flat binding, as previously illustrated in Figure 4-49 and Figure 4-50, the
data binding logic is located in a special function which performs marshalling and
unmarshalling. The two issues raised in 4.4.1.3 however, speak for merging the pure data and
the binding process together to improve application integration.

The simple idea implemented in the OOXOO library, is to get every data field to be
able to generate its own marshalled memory representation, which then can be written out
as XML. This way, every data field embeds the logic to generate itself, depending on its type.
This general concept is presented in Figure 4-51, where marshalling would:

1. Open the Car element.
2. Find the field color as an attribute; ask field to output its value as attribute.
3. Find the field model as an element; ask field to output its value as an element.
4. No more data, close the Car element.

Figure 4-51 Structured Binding base idea

What can be noted though is clearly that:

1. The presented data types are not rich enough to marshal themselves
2. There are two types of data:

o Structural : This is the Car class, that generates a <Car> XML element
o Simple : These are the data fields that map simple types to XML elements

or attributes (model and color)

If we can correctly solve the first issue, the solution to the second one should be naturally
derivable.

We are going to present in the next paragraph the Buffer and DataUnit (DU) classes,
which are the basic building blocks of OOXOO. Their responsibility is to provide the two
interfaces required to solve the previous matters:

 1 @XmlRootElement
 2 class Car {
 3
 4 @XmlAttribute
 5 var color : Int
 6
 7 @XmlElement
 8 var model : String
 9
10 // Not relevant for XML marshalling
11 var foo : String
12 }

1 <Car color="...">

2 <model>...</model>

3 </Car>

1

2

3

4

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 145

 DataUnit : A Marshalled data representation
 We can use this information to generate XML and or integrate with other

application layer
 Buffer : A chain of objects, that drive the marshalling process by exchanging

DataUnits
 The Buffer chain can be used as integration point for customisation

4.4.2.1 Buffers and Data units

As just mentioned, the basic architecture of our library relies on Buffers exchanging
DataUnits (DU), as can be seen in Figure 4-52 . The Buffers can be extended by classes,
provide specific functionalities, and be composed together throughout classes. DataUnits
represent marshalled data, with optional structure information, so that buffers can for
example build or read XML.

Figure 4-52 Buffer chain and DataUnit overview

146 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

4.4.2.1.1 Buffers

In the problem statement, we mentioned that OOXOO was designed to improve
integration with the application, whilst providing data input/output through marshalling. To
split those two application cases, the Buffers exchange with their neighbours using two
virtual channels: Stream and Push/Pull.

Stream interface

The Stream interface is used for I/O
operations like XML parsing or exporting. It
only generates Data Units on the right side.

A simple Data unit exchange example is
shown in Figure 4-54 (syntax elements
removed for picture concision)

Figure 4-54 Data Unit exchange using stream interface

 Repository: thesis
 Path: example-project/src/main/scala/ooxoo/simple/OOXOOSimpleExamples.scala

 1 class StreamTrigger ... {
 2
 3 def send = {
 4
 5 var du = new DataUnit
 6 du.value = "Hello!"
 7
 8 streamOut(du)
 9 }
10 }

 1 class StreamLog ... {
 2
 3 override def streamOut(du:DataUnit){
 4
 5 println(s"DU: "+du.value)
 6
 7 super.streamOut(du)
 8 }
 9
10 }

StreamTrigger StreamLog

1 var trigger = new StreamTrigger; trigger - new StreamLog
2
3 trigger.send

Send DU

Figure 4-53 Buffer Stream interface

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 147

Push/Pull interface

The Push/Pull interface follows the
same principle as the stream
interface, but can be used on the
buffer chain in both left and right
directions. Figure 4-56 presents a
simple example setup to show push
and pull calls on Buffer instances on
both direction, and Figure 4-57 a simple application example to resolve a numeric value
multiplied by a buffer (The full sources are not reproduced for concision).

Figure 4-56 Simple Push and Pull interface example

Figure 4-57 Pull interface applied to numeric expression resolution

 Repository: thesis
 Path: example-project/src/main/scala/ooxoo/simple/OOXOOSimpleExamples.scala

Left Right Middle

Send Send

Send

Gather Gather
Ga

th
er

1 var left = new Left
2 var middle = new Middle
3 var right = new Right
4
5 left - middle - right
6
7 middle.send
8 middle.gather

Push interface

Pull interface

Constant
10

Assign Multiply
var m : Int

10 40

1 var assign = (new NumericConstant - new Multiply(4) - new Assign)
2 assign.pull

Figure 4-55 Buffer Push/Pull interface

148 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

4.4.2.1.2 DataUnits

After defining how Buffers exchange DataUnits, we need to define how these hold
content. Depending on the Buffer that generated it, the content of a DataUnit vary, but to be
able to mirror an XML structure, it also has to be able to hold following information:

 Element name and Namespace: If the DU is mirroring an XML element
 Attribute name and Namespace: If the DU is mirroring an attribute of current

Element
 Value: If the DU is holding any kind of value, it is serialised as a string
 Hierarchical: DU represents structured data, because we need to know at some point

when opening or closing a hierarchy (an element in an element for example)

The following table summarises the DataUnit values depending on the possible cases.

Case Element Attribute Value Hierarchical
Element open
Element close
Element open + value
Attribute
Value

4.4.2.2 Element Structural Buffer

Finally, if we now can generate data units for all XML cases, we need a way to map
the object structure to a valid DataUnits stream. We presented earlier two types of data in an
object hierarchy: Structural and Simple.

4.4.2.2.1 Simple Data handling

The simple data are the one which
only hold a value like a String, Integer,
Long etc…. We can create Buffers which
map those simple data types to DataUnits,
but we wouldn’t be able to know at
runtime if the field is supposed to map to
an attribute or an XML element.

IntegerBuffer
10

DataUnit : “10”

1 <?>10</?>

1 <... ?="10"></...>

? ?

Figure 4-58 Simple DataBuffer can't map to structure

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 149

The structural buffers however are the containers of simple data. Based on
annotations provided as metadata in a class definition, it can setup the structure data of the
data unit, and pass it to the simple data buffer which only needs to merge-in its internal value
(Figure 4-59).

Figure 4-59 DataUnit production for a simple data mapped to an element

The same process happens when receiving DataUnits in a Structural buffer as well,
but the other way around: First create the simple data buffer and then stream to it the
DataUnit from which it will extract data for its interval value (Figure 4-60).

Figure 4-60 DataUnit receive for a simple data mapped to an element

 1 @xelement
 2 class Example extends ElementBuffer {

 3

 4
 5
 6
 7
 8
 9
10 @xelement
11 var color : IntegerBuffer = 10
12 }

DataUnit
Element: color
value: -

DataUnit
Element: color
value: “10”

End

1 @xelement
 2 class Example extends ElementBuffer {
 3
 4
 5
 6
 7
 8
 9
10 @xelement
11 var color : IntegerBuffer = null
12 }

DataUnit
Element: color
value: “10”

IntegerBuffer

End: Streamin

Start

150 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

4.4.2.2.2 Hierarchy handling

To repeat this input or output process on an object hierarchy, the structural buffer
simply traverses all its class fields, previously listed using the Java reflection API. The last case
is met when a structural buffer meets another structural buffer in its content. It then simply
delegates the or process to this buffer, triggering sub-tree production. streamIn streamOut
Figure 4-61 shows the DataUnit Production for structure mirroring.

Figure 4-61 Open-Close across hierarchies

4.4.2.3 The simple data types issue

An important issue with the presented architecture is that it basically does not allow
simple data types like String, Int, Long (…). It is problematic for simple data structures where
the user does not really need the Buffer feature, but also inconvenient to work with when
manipulating the data, as the user always have to access information in an explicit way:

 Repository: thesis
 Path: example-project/src/main/scala/ooxoo/simple/SimpleDataTypes.scala

1 @xelement
 2 class Example extends ElementBuffer {
 3
 4
 5 @xelement
 6 var example : Example = _
 7
 8
 9
10 }

DataUnit
Element: Example
Hierarchical: true

DataUnit
Element: Example
Hierarchical: true

DataUnit
Element: -
Hierarchical: true

DataUnit
Element: -
Hierarchical: true

Open

Close

Open

Close

1 var i = IntegerBuffer(5)
2
3 i.data = 2 * i.data
4
5 println(s"Explicit i: "+i)

Internal data holder
called explicitly

Explicit i: 10

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 151

To palliate to this syntax issue, it is possible to specify implicit conversion from a
simple data buffer to its underlying data type back and forth. This mechanism has been
detailed in 2.2.1.

Another possibility would be naturally to add a type map between non-buffer types
and buffer types for the structural buffers to make conversions, but it has not been
implemented yet because the implicit mechanism was enough to live with.

4.4.2.3.1 Implicit conversion trap

Implicit conversions can lead to some cumbersome issues if not properly considered.
It is especially true in our buffer architecture and here is why:

 When performing implicit conversions,
new object instances are created to
represent the created value.

 When assigning a buffer variable
through implicit conversions, we get a
new instance of the buffer.

 If a buffer chain had been setup
previously, it remains on the pre-update
value, which is probably going to be
garbage collected.

 The new instance has no buffer chain
connected to it

In most use cases, this won’t be an issue, but when complex buffer chains are setup,
it might happen, and the “error” might become difficult to find out, as the problem lies in a
wrong language usage.

1 var i2 = IntegerBuffer(5)
2
3
4 i2 = 2 * i2
5
6
7 println(s"Implicit i: "+i2)

Implicit to Int Implicit to IntegerBuffer

Implicit i: 10

 1 class IssueExample
 2 extends ElementBuffer {
 3
 4 var i = IntegerBuffer(5)
 5
 6
 7 }
 8 var i3 = new IssueExample
 9
10 println(i3.i.hashCode())
11
12 i3.i = 2 * i3.i
13
14 println(i3.i.hashCode())

Figure 4-62 Class-field instance override instead of
value update

152 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

A good practice to avoid that kind of issues consists in using a getter-setter
mechanism in classes, to ensure simple data type assignments to Buffers only merges the
underlying data holder, rather than replace the whole Buffer. This cost a data structure setup
overhead, but if the classes are generated, the code generator can take care of this.
Fortunately, the flexibility of Scala makes it possible to hide the getter-setter methods behind
a syntax strictly identical to the one of standard variable assignment. Figure 4-63 provides an
illustration for a class variable i of type IntegerBuffer, which can be set using a standard =
operator, while the implementation correctly differentiates between resetting the whole
buffer or just the internal value.

Figure 4-63 Scala = operator used as getter-setter

4.4.2.4 Collections

The last vital core feature required is a way to handle collections of Buffers. It is very
common to repeat the same data structures, and thus create a collection typed field (like a
List) in the structure of a class. However, we only want to rely on the generic Buffers
architecture to handle hierarchy traversing, and avoid special handling as much.

A special List type called XList, which extends a Mutable List and imports the Buffer
trait, has been created for this purpose. A structural buffer will then only see the List as a
buffer, and pass-on DataUnits when required. The XList simply redefines the and streamIn

 behaviour of a normal Buffer and repeats it for the list content, or stores incoming streamOut
elements in the list.

1 class FixedExample
 2 extends ElementBuffer {
 3
 4 var _i = IntegerBuffer(5)
 5
 6 // obj.i = xxxx setter
 7 def i_=(v: Int) = _i.data = v
 8 def i_=(v: IntegerBuffer) = _i=v
 9
10 // obj.i getter
11 def i = _i
12
13 }
14
15 var i4 = new FixedExample
16
17 println(s"Instance: "+i4.i.hashCode())
18
19 i4.i = 2 * i4.i
20
21 println(s"Instance: "+i4.i.hashCode())

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 153

4.4.2.4.1 DataUnit production

Producing DataUnits is an easy task. The process is the same as the one presented in
Figure 4-59, only the XList produces as many DataUnits as it contains elements. Figure 4-64
illustrates this for an Element DataUnit passed by the enclosing structural buffer to a list
holding IntegerBuffer.

Figure 4-64 XList DataUnit repetition for a collection

4.4.2.4.2 DataUnit consumption

When receiving element, it is once again exactly the same procedure as in Figure
4-60, with the small difference that the structural buffer instantiates the XList, and not its
content, which must be created by the latter. The implementation of the XList is totally
generic, and thus cannot guess the type of data which it stores to perform instantiation. It is
required to provide an anonymous function to the XList constructor, which will be used as a
factory when receiving elements. Figure 4-64 illustrates the conversion path from a received
DataUnit to an IntegerBuffer by using a factory lambda-function to create the base Buffer
instance.

DataUnit
Element: Example
value: -

XList

IntegerBuffer: 0

IntegerBuffer: 2

IntegerBuffer: 10

DataUnit
Element: Example
value: “0”

DataUnit
Element: Example
value: “2”

DataUnit
Element: Example
value: “10”

154 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

Figure 4-65 XList DataUnit receive with factory-based content instantiation

The following Figure 4-66 shows an XList declaration example inside a class. On line 4,
the XList is created, with a constructor argument being the lambda function used as factory
when receiving DataUnits.

Figure 4-66 XList instantiation example

DataUnit
Element: Example
value: “10”

XList

1 (=> Buffer) = {
2 new IntegerBuffer
3 }

IntegerBuffer: 10

Factory

1 class Example ... {
2
3 @xelement
4 var multiple = XList {new IntegerBuffer }
5
6 }

Factory

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 155

4.4.3 Marshalling and un-marshalling: the I/O layer

So far we have setup ground for marshalling and un-marshalling by presenting the
Buffer and DataUnit architecture. It is easy to see that marshalling or un-marshalling data
could be performed by creating a special buffer that will receive DataUnits (for marshalling),
or produce some (for un-marshalling).

When considering a data format like XML, we can say that this buffer will be a
serialising or deserialising buffer (called SerDes buffer for short) , because it will be
converting an object hierarchy to and from a character stream.

In Figure 4-67, where “a” and “b” would be two structural buffers, we can note that
the SerDes buffer has a many-to-one relation from the data structure to the character stream
on the serialisation side, and a one-to-many relation on the deserialization side. We can thus
derive following characteristics:

 Only one instance of the buffer is required to serialise or de-serialize data (The
"one" side of the relation).

 This same instance must be present on all the data buffer chains to be serialised
or de-serialised (The “many” side of the relation)

 Additionally, the SerDes process is typically punctual and takes place after a
synchronisation point between all threads which are using the data, until the next
I/O phase (Figure 4-68). The persistent presence of the SerDes buffer on the
buffer chains is thus not desirable as it is not related to the standard application
workflow of data processing. The SerDes buffer should then be transient and
disappear after hierarchy traversing.

Figure 4-67 Serialisation and de-serialisation of an object hierarchy

Figure 4-68 I/O synchronisation phase

156 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

To support those characteristics, a subset of the standard buffer has been defined,
called I/O buffer. I/O buffers must follow the object hierarchy traversing during or streamOut

 operations, but they also have to be transient. This is easily achieved by streamIn
implementing following behaviour:

 For all Buffers: After streamIn or streamOut, remove the I/O Buffer
 For Structural Buffers: When entering a sub-hierarchy, connect the I/O buffer to

the target buffer.

However, the I/O buffer must also return to the parent hierarchy when a sub-
hierarchy has been fully processed. Standard tree-traversing always feature a stack to be able
to track the parent-child hierarchies, stack which is missing at the moment. The intuition
would bring us to making the structural buffers follow the hierarchy. It would work if both
streamOut and streamIn where driven by the structural buffer and thus blocking.

Figure 4-69 and Figure 4-70 illustrates the behaviour of the streamOut and streamIn
processes when hitting hierarchies (simple data are a corner case because they are single
atomic operations). The streamOut side is blocking on sub-hierarchy processing, but not the
streamIn side as it is driven by the I/O buffer. Only the I/O buffer will trigger the end of sub-
hierarchy, this is why the parent hierarchy cannot retrieve the I/O after the sub-hierarchy
processing, whose return does not imply the sub-hierarchy has been completed.

Figure 4-69 Streamout driven by hierarchy

Figure 4-70 Hierarchy driven by streamIn

 Note: This characteristic of the architecture is difficult to understand, so was it also at
implementation time, but reveals itself quite elegant.

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 157

To solve the hierarchy tracking, the solution is simpler than it appears. Instead of
handling it on both sides independently, we managed to implement the behaviour at the
level common to both behaviours: I/O buffer connection (enter hierarchy) and removal (leave
hierarchy). The special I/O Buffer class behaves in both cases as following:

 On connect:
o Stack the buffer to which to I/O buffer is connected to.
o Connect normally to the new buffer chain.

 On remove:
o Connect back to stack top.

Finally, the implementation does not only move around only one I/O Buffer, but an
I/O chain, which is the set of buffers connected after an I/O buffer.

Figure 4-72 illustrates both connect and remove process on the I/O chain for the
streamIn case where both operations are driven by receiving data units:

1. First a hierarchy open DataUnit is received, and matched against the example class-
field

2. The I/O chain is connected to the class-field Example Buffer, streamIn continues on
this sub-hierarchy

3. When the hierarchy close DataUnit is received, the I/O chain is removed from the
class-field and jumps back to the container Buffer automatically

Figure 4-72 I/O chain hierarchical connect/remove

The streamOut process is identical, but the DataUnits are produced by the classes instead of
being received.

Figure 4-71 I/O Chain

 1 @xelement
 2 class Example extends ElementBuffer {
 3
 4
 5 @xelement
 6 var example : Example = _
 7
 8
 9
10 }

Open DataUnit

Close DataUnit

Connect Remove
reconnect

I/O Chain

I/O Chain

158 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

4.4.3.1 Handling non hierarchical buffer levels: the collection case

If we analyse the I/O process for a class containing an XList collection, it appears that
the I/O chain would get stuck at this hierarchy level. Figure 4-73 details the I/O chain location
when processing an XList content, and shows that it does not return to the structural buffer
level. During streamOut, no problem would be seen, as the XList must remove the I/O chain
after producing its content, but streamIn would see all further DataUnits consumed by the
list.

Figure 4-73 I/O gets stuck in XList buffer level during streamIn

This issue can be characterised in a generic way, by noticing that the I/O process
needs to consider only the real relevant data buffers. As the collection buffer is just a
container which is not mirrored in the data representation, it can be seen as a “virtual”
hierarchy. The solution has thus been implemented in a very simple way by defining an
interface, used as type marker, called IOTransparentBuffer.

When reconnecting to the stack top during removal, an IOBuffer simply ignores any
stack-top which is type IOTransparentBuffer, and jumps one level higher. All buffers which are
special container of data must extend the IOTransparentBuffer interface.

Figure 4-74 Transparent buffer type marker for "virtual" hierarchies

Structural buffer

XList buffer

I/O Chain

Content Buffer remove

I/O IOTransparentBuffer

Buffer

Buffer

Structural buffer

XList buffer

I/O

Content Buffer remove
Parents stack

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 159

4.4.3.2 XML I/O

A common parsing strategy for XML documents is called event-based parsing. The
XML parser produces events to notify the caller when structural character sequences are met,
like element open/close, attribute, text content etc... We already presented in 4.4.2.1.2 the
mapping between those event types and the DataUnit configuration.

The default XML IOBuffer implementation which is provided in OOXOO’s standard
library uses the standard Java Stax parser, and simply converts parsing events to DataUnits,
or DataUnits to write events for the serialising side.

Figure 4-75 shows both XML output and parsing usage for a simple Add element. The
IOBuffer called StAXIOBuffer is used to write out or parse the XML. It is appended to the Add
ElementBuffer chain before streamOut or streamIn, and automatically disappears afterwards.

Figure 4-75 Data to XML and reverse

 Repository: thesis
 Path: example-project/src/main/scala/ooxoo/simple/XMLIO.scala

 Repository: ooxoo-core

 Class: com.idyria.osi.ooxoo.core.buffers.structural.io.sax. StAXIOBuffer

1 var add = new Add
2 add.a = 2
3 add.b = 2

1 var output = new ByteArrayOutputStream
2 var io = StAXIOBuffer(output)
3
4 add - io
5 add.streamOut()

1 io = StAXIOBuffer("""<Add
a="5" b="5"/>""")
2 add - io
3 io.streamIn

To XML From XML

Data drives output IO drives data

1 <Add a="5" b="5"/>

160 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

4.4.3.3 JSON I/O

The JSON format, standardised in [63] by the IETF, is a structured data format
representation for the Javascript language, which provides data binding. It is widely used in
web application context and its data <-> structure concept makes it a natural candidate for a
dedicated I/O layer implementation in OOXOO.

The SerDes process won’t be detailed here, but Figure 4-76 presents an interesting
use case of this I/O layer combined with the XML one, to allow remote procedure calls from
different application sources using divergent data representation format. It is indeed possible
to use the same Data definition classes, and use either XML or JSON as serialised
representation format.

Figure 4-76 XML or JSON formats used with the same Data definition

 Repository: ooxoo-core
 Class: com.idyria.osi.ooxoo.lib.json.JsonIO

JSON I/O

XML I/O

Data
Application process

Web
Browser

Standard.
Application XML

JSON

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 161

4.4.4 Register file application interface

In section 4.1 we presented the concept of register files and associated generator
software. Among the possible outputs of a register file generator, an XML format mirroring
the register file hierarchy and holding various data produced by the tool-chain has be
described. We are going to describe here how the OOXOO library was extended to efficiently
offer the developer a way to access a device register file.

4.4.4.1 Register file software interaction characteristics

4.4.4.1.1 Read-Modify-Write support

In a register file specification, the addressable memory locations are Registers and
RamBlocks entries. Depending on the target architecture, these locations have a certain byte
granularity. On a standard 64bit x86 architecture, the minimal host-addressable unit size is
64bit, or 8 bytes (quad-word). However, the digital logic has no specific granularity and very
often only relies signals which are a few bits wide.

Registers and RamBlocks can define fields, which are named bit subsets of the host
minimal read/write size. To modify a memory location field, the host must thus perform a
read-modify-write cycle. Considering that most hardware functions’ control and status
registers are defined using fields, the developer expects a programming interface that
exposes the fields as atomic elements, while hiding the register level, as illustrated in Figure
4-77.

When performing multiple field modifications, especially on the same register, it is
not very optimal to trigger a read-modify-write to the device for each change. An interesting
option would be to be able to group the modifications and I/O operations. Figure 4-78 shows
the read-modify-write flow for both non-optimised, on the left, and optimised I/O on the
right. It can be seen that only one read is needed to modify the two fields of the “reg”
register, and only two writes are performed at the end to commit the modification on the
two registers.

Figure 4-77 Read-Modify-Write for register field

162 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

4.4.4.1.2 Scalable Multiple register file access

In some specific application context, it shall be possible for the software to access
multiple identical register files located on distinct hardware. To serve this purpose, one
instance of a register file object could be created, and configured to reach the desired
hardware instance. This solution is however not really scalable, for when the number of
supported targets, and the base size of the register file specification grow, the amount of
main memory required to hold the descriptors would consequently also grow beyond the
acceptable.

The best option would be to keep only one parsed register file description, and
decide which target to address at runtime, as illustrated in Figure 4-79.

4.4.4.2 The Register file OOXOO interface

The first step to implement the register file interface is to mirror in Scala classes the
XML structure described in 4.1.4.3. The current implementation is compatible with the older
RFS XML format, but the concept has been written with the RFG rework in mind, and is valid
no matter which version is considered. The following work represents a standard software
design, with no specific innovation.

Figure 4-78 Synchronous or Asynchronous Read-Modify-Write

Figure 4-79 One descriptor to many register files

 Repository: odfi-rfg, Library: scala-interface.

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 163

4.4.4.2.1 The value buffer

Once the XML structure has been defined, we must add the placeholders to modify
the values of the registers, RamBlock entries and fields. On a standard 64bit x86 host running
the Java virtual machine, the maximum width available to represent values is of 64bit, which
we can represent using a Long data type. Therefore, a standard LongBuffer typed value field
is added to the relevant classes.

Using the value Buffer, in combination with the getter/setter field definition model
defined in 4.4.2.3.1, we can now implement an appropriate behaviour when a value is
fetched or set through the programming interface. Using the Buffer API, we can perform push
and pull operations on the value buffer chain, which could further down be translated to real
Read and Write requests (Figure 4-80).

Figure 4-80 Getter/Setter to Push/Pull mapping

In this configuration, the ValueBuffer lacks tough the addressing information to issue
Push/Pull DataUnits which would be rich enough to be processed. The ValueBuffer was
therefore improved with a reference to its containing Register or RamBlock descriptor, from
which it can fetch the address information.

DataUnit Format

The push and pull DataUnits could be
issued by the ValueBuffer with the memory
address set as a string in the value field (of the
DataUnit). However, it has been chosen to add
a context map to the DataUnit specification, in
which the application can store arbitrary
values.

Using a context map allows saving unnecessary string conversion specification and
implementation when Buffers belonging to the same application communication with each
other. The programming can be made cleaner this way.

1 // Read
2 var res = reg.value
3
4 // Write
5 reg.value = 0x...

ValueBuffer

Pull

Push
Write

Read

DataUnit

Value : Any Key : String

Value : Any Key : String

Value : Any Key : String

Context map

164 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

Read/Write decoupling

We could argue at this point, that the ValueBuffer could simply directly issue read
and writes to a Device interface, instead of first issuing Push and Pulls. This argument makes
sense, but the main idea behind the OOXOO design is to keep the architecture components
decoupled, to allow plugin-in other components, potentially alien to the initial design to
support complex scenarios. Quite often, those scenarios are not even know to the
specification at implementation time, and will be discovered in a later design stage.

4.4.4.2.2 The Device Buffer

The Device buffer handles issuing the Push and Pull requests from the value buffer to
the underlying device. Typically, device connections are handled by a single instance of an
interface object in the application space, called a Singleton. The reason is simply that devices
are normally single discrete actors in a system, on which I/O operations are performed by a
single thread during a synchronised application phase (remember Figure 4-67), and thus only
need one interface.

The pendant device interfacing used by the Device Buffer is an Interface + Singleton
(object in Scala semantic) pair:

 The Device interface (a Trait in Scala) must be implemented by an application-
provided class, and defines the read/write methods targeted at the desired
memory location.

The read method returns a Scala Option object, which can match to the value
None in case the read should have failed.

 The Device singleton implements the Device Interface, but forwards the
read/write calls to the application-selected interface.

1 trait Device {
2
3 def open
4 def close
5
6 def readRegister(address : Long) : Option[Long]
7 def writeRegister(address : Long, value : Long)
8
9 }

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 165

4.4.4.2.3 The Field value

The field objects are finally added to their container Register or RamBlock with a reference to
the latter. The “value” getter/setter interface of a field is simply a wrapper that fetches the
value of the container, modifies the necessary bits, and set the value back.

4.4.4.3 The generic transaction extension

Two features defined in 4.4.4.1 are still missing:

1. Write grouping for a sequence of Read-Modify-Write
2. Multiple host’s register files access.

RegisterFile interfacing must be considered an I/O process. All read-modify-writes
should thus be run sequentially by one Thread. Multi-threading is possible if accessing
multiple register file instances on distinct hardware.

Single Threaded, or Thread-Specific bulk update of data looks very much like a
Database Transaction mechanism. Basically, a transaction is a phase during a sequential
thread execution flow, marked by a start and an end, during which the changes in the state of
some persistent data is logged, and submitted to the storage at the end, or discarded. If an
error happens during data updating, or if the transaction is discarded for some reason, a
rollback operation takes place to restore the pre-Transaction state. This dataflow is presented
in Figure 4-81.

The two missing features can be implemented using a transaction mechanism. The
bulk update will be handled by a simple transaction behaviour, and the host selection can
happen when starting a transaction.

Figure 4-81 Transaction begin - commit - rollback flow

166 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

4.4.4.3.1 The transaction buffer

So far we have defined read/write mapping to a device by specifying two buffers
chained together: a ValueBuffer and a DeviceBuffer. To implement a Transaction mechanism,
it is sufficient to catch the Push/Pull DataUnits issued by the ValueBuffer, and release, discard
or issue some back to restore state. A TransactionBuffer as been developed to support the
transaction mechanism, which was inserted between the ValueBuffer and DeviceBuffer, as
shown in Figure 4-82.

Figure 4-82 Transactional value chain

For example, during read-modify-write cycles, under an active transaction, the
behaviour of the push and pull channels will be:

 Pull:
o Initial state: No cached value
o If a cached value is available, return it
o If no cached value is available, forward

 Push:
o Store the DataUnit

 Transaction Commit
o Forward the Push DataUnit
o Discard the cached Pull DataUnit

 Transaction rollback or cancel
o Pull on the right if no cached Pull DataUnit is available
o Push to the left the last cached Pull DataUnit or the one just pulled to restore

values
o Discard the Stored Push

Some additional Transaction states are available for special behaviours like:

 Stopped/Inactive: Push and Pull are always forwarded
 Blocking: Push is stored, and Pull return no value (blocked)

ValueBuffer DeviceBuffer

DeviceBuffer ValueBuffer TransactionBuffer

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 167

4.4.4.3.2 Transaction State management

The transaction state is managed per thread. It is easily implemented using an object
(Singleton) called Transaction, on which the user can manage the state, with very simple API
calls. The transaction buffers, when triggered on their Push or Pull interface, check if a
transaction was setup for the current thread, and if so, registers event listeners on the
current Transaction object to be called on state change.

Figure 4-83 Transaction state relation to transaction buffer

4.4.4.3.3 Target host selection: Transaction initiator

The current Transaction stage management API already features nearly everything
needed to support multiple register file targets. The transaction class representing the
currently setup transaction was improved to be able to hold a reference to an object of any
type called an initiator.

The initiator reference can be passed to the Transaction singleton when setting up a
transaction. As presented in Figure 4-84, the ValueBuffer enriches the Push/Pull DataUnits
with the transaction initiator reference, if it is of a certain type called RegisterFileHost. A
register file host holds an extra piece of information called ID (of type Short), which is passed
the Device layer’s read and write functions to choose a target host if possible.

1 // Create
2 Transaction()
3
4 // Commit
5 Transaction().commit

168 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

Figure 4-84 DataUnit enrichment with initiator

4.4.4.4 Final ValueBuffer configuration

To sum-up the register file interface coupled with the transaction mechanism for the value
representation, Figure 4-85 shows the class hierarchy and Buffer chain which is created per
default for all value buffers. The whole setup is grouped under a class called
RegisterTransactionBuffer in the source code.

Figure 4-85 Value buffer final inheritance, buffer setup and container reference

Transaction

ValueBuffer

Initiator
 id : Short

DataUnit DeviceBuffer

Device

1 var host : RegisterFileHost = ...
2
3 // Create with initiator
4 Transaction(host)
5
6 // Commit
7 Transaction().commit

RegisterTransactionBuffer
TransactionBuffer DeviceBuffer

Horizontal: Buffer chain

LongBuffer

Vertical: Inheritance

Container
Register or RamBlock

reference

Uni. Heidelberg - LS Rechnerarchitektur | Components for Hardware Software co-design 169

4.4.5 Conclusion

In this chapter we presented a flexible architecture for structured data binding,
designed to reach heterogeneous setup of application components. Although the historical
design was meant for XML-based applications, it appears that the generic nature of the data
structures and their interconnection methodology, make it suitable and easy to adapt for
various kind of usages.

A concrete application example has been presented, which mixes XML binding with a
hardware register binding, using the generic semantic and interconnection methodology
presented in the global architecture definition. This helped minimizing the implementation
effort.

During the register file interface implementation, we prove that the Buffer chain idea,
correctly used to decouple application layers, could allow integrating external behaviours to
solve internal issues discovered late in the design phase. This was the case when we used the
generic Transaction mechanism to add vital features to the interface behaviour, without
modifying it consequently.

After nearly 10 years of improvements and redefinition of the OOXOO library’s
behaviour, we could show that generic architecture definitions, extracted from a concrete
problem statement (XML-data binding) can lead to very reusable software components, and
should never be neglected when designing new applications…even if it comes at the cost of a
top-hill analysis overhead.

It is also interesting to note that the presented architecture was first designed when
the Register file interface software presented in 4.1 did not exist, and where not even
planned.

170 Components for Hardware Software co-design | Uni. Heidelberg - LS Rechnerarchitektur

Uni. Heidelberg - LS Rechnerarchitektur | Conclusion and Outlooks 171

5 Conclusion and Outlooks

To trace a path toward raising the abstraction level in hardware-software co-designs,
this work was divided in two main themes:

 Language design
 Applications to integrated circuit design flows.

A set of programming methodology building blocks was first presented. Inspired from
the convergence of traditional imperative and functional programming, they set ground for
embedded domain specific language (EDSL) design. While standard domain specific languages
allow creating software interfaces which are closely modelling specific application fields,
embedding them in host language allows lightening their setup and maintenance costs, and
makes them very interoperable within the hosting technology bounds.

As a consequence, the host language choice is critical, and should ideally be adapted
or adaptable to both the existing software environment and to the criterions of EDSL design
presented in 2.4.

Electronic Design Automation tools widely support the TCL language, which is well
known for being minimalistic (everything is a list in TCL), but less for being very open to deep
customisation. To be able to use domain specific languages for digital design flows, we thus
tried to find a way to bring a functional programming flavour to TCL scripts .We successfully
reached this goal by presenting a library for closure-based programming in 3.2, and
implementing an EDSL design methodology in 3.3.

The results of EDSL design in TCL are shown to be promising. The code can be
structured in a very clear way, and be spared from too many language syntax-specific
keywords and characters. Moreover, we prove that an EDSL can emerge directly from the
data structures definitions, which enables creating a new language within a few minutes, and
without any external tool-chain. One simply opens a new script and load two libraries.

We then introduced some applications which make a concrete and extensive usage of
TCL based EDSL design. The selected work spans along the digital hardware design flow: from
design input (register file 4.1) to physical implementation (floorplanning 4.2) and high level
integration (part language 4.3, OOXOO 4.4). Applications sharing the same background (TCL
scripts) were shown to be very interoperable, while less interoperable components (register
file script and user-space software binding) need to exchange data using serialised character
data (XML files).

Altogether, we can say that we succeeded in proposing a way to really bridge the gap
between abstraction levels and implementation specificities while keeping design flows
consistent across those abstraction levels.

 To go further in this direction, we will conclude by exploring a possible future
application to hardware description language.

172 Conclusion and Outlooks | Uni. Heidelberg - LS Rechnerarchitektur

5.1 Abstraction in hardware description languages

The presented applications mainly focus on the technology implementation
(manufacturing) and integration steps of design flows. Digital circuits are however specified
using special hardware description languages (HDL), the most widespread one being Verilog
and VHDL.

Those languages are domain specific, and aim at providing an abstraction level
suitable to the description of digital synchronous or asynchronous circuits. In regard to the
presented language design methodologies, it appears possible to create an EDSL which would
provide a programming interface to create an in-memory representation of a digital circuit.
This approach presents the advantage of offering the full flexibility which has been shown for
this work’s applications, like custom abstraction level definition, tree transformation,
optimisation, while preserving the possibility of full circuit description.

The “programming language” nature of HDL is a challenge for the creation of an EDSL.
Indeed, defining a programming language inside another programming language leads to
name clashes for control structures and operators. Additionally, the language acceptance is
an important issue. If the designers must learn how to use a library to manually instantiate
and connect together circuit elements, the benefits of the abstraction level could be lost to
the usage complexity. For example, as presented in Figure 5-1, the Verilog language uses the
C-like “if” syntax to describe value multiplexing.

Figure 5-1 Verilog if to multiplexer mapping

Porting this syntax in an EDSL could become challenging, because a control structure
like “if” is typically a core operator in the language parser, and can’t be overloaded. Some
existing projects try to implement an EDSL applied to hardware design. The two most notable
one are MyHDL [64] written in Python and Chisel [65] integrated in Scala. They both work
around this challenge in two different ways:

 1 wire a;
 2 wire b;
 3 wire res;
 4 if (a & b) begin
 5
 6 res = 3;
 7
 8 end
 9 else begin
10
11 res = 2;
12 end

Schematic View

Uni. Heidelberg - LS Rechnerarchitektur | Conclusion and Outlooks 173

 Chisel adds its own control structures. The “if” keyword is implemented using the
“when” function definition. The main drawback of chisel is its highly object oriented
nature in Scala, which forces the usage of classical Scala programming syntax and
code overhead, which is not desirable.

 MyHDL uses Python decorators. A decorator is a function which can process the
Abstract Syntax Tree of another function definition. This way MyHDL can reuse the
Python syntax to generate an in-memory circuit description, but forces the user to
write HDL code in special annotated functions, and limits standard Python usage at
this level.

How would then behave our TCL EDSL strategy in this context? Surprisingly, it
appears possible to come out with an elegant solution. If example of an “if” control structure
override was already presented in 3.1 Example 3-4, we can try to define a few elements of
language as we did during this work. We tried to stay close to Verilog, and managed to
produce a result presented in Figure 5-2.

Figure 5-2 Example of an HDL EDSL in TCL

 1 set alternative 1
 2 h2dl::module ::counter {
 3 input clk
 4
 5 output out {
 6 size 10
 7 }
 8
 9 synchronous clk {
10
11 if {$out == 3} {
12
13 ::if {$alternative==1} {
14 $out <= $out + 2
15 } else {
16 $out <= $out + 3
17 }
18
19 } else {
20 $out <= $out + 1
21 }
22
23 }
24
25 }

HDL if

Standard TCL ::if

174 Conclusion and Outlooks | Uni. Heidelberg - LS Rechnerarchitektur

On the left, a now familiar TCL EDSL syntax with its associated generated in-memory
abstract syntax tree on the right. We can see that it is possible to alternate host language
control structures (line 13) and HDL control structures (line 11), in order to define the
elaboration-time behaviour, and the pure digital logic behaviour. This syntax should be
acceptable to learn for hardware designer, as it stays close to a classical Verilog Syntax.
Moreover, it would be very easy to create different HDL control structures, for example some
closer to VHDL.

Finally, another possible example presented in Figure 5-3 could be a tight integration
of the register file language inside this HDL DSL. In such a case, each HDL hierarchy could
define its own register file locally, and the final top-level hierarchy would gather the register
files in the hierarchy, and adapt the circuit depending on the final requirements: The RFG
registers can be either be moved across levels, or new connection wires created.

5.2 Design flow libraries open sourcing

In accordance to the software reusability concepts set along this work, all the sources
are available under a General Public License (GPL), and opened to usage and improvement.
Details are provided in Appendix A.

Figure 5-3 Register file generator and TCL HDL language integration examples

Bibliography
[1] “Moore’s Law.” [Online]. Available: http://en.wikipedia.org/wiki/Moore’s_law.

[2] Satya Prakash Singh and Jayant V. Deshpande, “Break-Even Point,” JSTOR: Economic
and Political Weekly, Vol. 17, No. 48 (Nov. 27, 1982), pp. M123+M125+M127-M128,
1982. [Online]. Available:
http://www.jstor.org/discover/10.2307/4371597?uid=3738016&uid=2&uid=4&sid=21
103704789777. [Accessed: 20-Mar-2014].

[3] “Break-Even Analysis.” [Online]. Available: http://simplestudies.com/accounting-cost-
volume-profit-analysis.html/page/8.

[4] “Binary Code.” [Online]. Available: http://en.wikipedia.org/wiki/Binary_code.

[5] A. Aho, Compilers : principles, techniques, & tools. Boston: Pearson/Addison Wesley,
2007.

[6] B. W. Kernighan, The C Programming Language. Prentice-Hall, 1978, p. 228.

[7] “GCC GNU Compiler.” [Online]. Available: http://gcc.gnu.org/.

[8] “x86-64.” [Online]. Available: http://en.wikipedia.org/wiki/X86-64.

[9] B. J. Cox and A. J. Novobilski, Object-Oriented Programming: An Evolutionary
Approach. Addison-Wesley Publishing Company, 1991, p. 270.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software (Google eBook). Pearson Education, 1994.

[11] A. Church, “An Unsolvable Problem of Elementary Number Theory,” Am. J. Math., vol.
58, no. 2, p. 345, Apr. 1936.

[12] A. M. Turing, “Computability and λ-definability,” J. Symb. Log., vol. 2, no. 04, pp. 153–
163, Mar. 1937.

[13] W. Kluege, The organization of reduction, data flow, and control flow systems. MIT
Press, 1992.

[14] M. Schönfinkel, “Über die Bausteine der mathematischen Logik,” Math. Ann., vol. 92,
no. 3–4, pp. 305–316, Sep. 1924.

[15] H. B. Curry, “An Analysis of Logical Substitution,” Am. J. Math., vol. 51, no. 3, p. 363,
Jul. 1929.

[16] J. Backus, “Can programming be liberated from the von Neumann style?: a functional
style and its algebra of programs,” Commun. ACM, vol. 21, no. 8, pp. 613–641, Aug.
1978.

[17] J. McCarthy, M. L. Minsky, and N. Rochester, “The LISP Programming System,” Mass.
Inst. Tech. Res. Lab. Electron. Q. Prog. Rep., no. 53, pp. 124–152, 1959.

[18] G. L. Steele, Common LISP: the language. Digital press, 1990.

[19] G. L. Steele Jr and G. J. Sussman, “The revised report on SCHEME: A dialect of LISP,”
1978.

[20] R. Hickey, “The Clojure programming language,” in Proceedings of the 2008
symposium on Dynamic languages - DLS ’08, 2008, pp. 1–1.

[21] J. K. Ousterhout, “Tcl: An Embeddable Command Language.” .

[22] Y. U. D. of Computer Science, P. Hudak, S. P. Jones, P. Wadler, B. Boutel, J. Fairbairn, J.
Fasel, M. M. Guzman, K. Hammond, J. Hughes, and others, Report on the
Programming Language Haskell: A Non-strict, Purely Functional Language. Version 1.1.
1991.

[23] J. Armstrong and S. Virding, “Erlang-an experimental telephony programming
language,” XIII Int. Switch. Symp., 1990.

[24] M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth, S. Micheloud, N. Mihaylov, M.
Schinz, E. Stenman, and M. Zenger, “An Overview of the Scala Programming
Language,” no. Section 5, 2004.

[25] J. Armstrong, R. Virding, C. Wikström, and M. Williams, “Concurrent Programming in
ERLANG.” 1993.

[26] R. D. Greenblatt, T. F. Knight, J. T. Holloway, and D. A. Moon, “A LISP machine,” in
Proceedings of the fifth workshop on Computer architecture for non-numeric
processing - CAW ’80, 1980, vol. 15, no. 2, pp. 137–138.

[27] A. C. Kay, “The reactive engine,” 1969.

[28] B. K. J. Beazley David, “Python Cookbook, 3rd Edition - O’Reilly Media.” [Online].
Available: http://shop.oreilly.com/product/0636920027072.do?green=433478B6-
29BD-57D3-040C-F811D6E1EDE0&intcmp=af-mybuy-0636920027072.IP. [Accessed:
28-Mar-2014].

[29] D. Koenig, A. Glover, P. King, G. Laforge, and J. Skeet, Groovy in action. 2007.

[30] “Rust.” [Online]. Available: http://www.rust-lang.org/.

[31] “EPFL LAMP.” [Online]. Available: http://lamp.epfl.ch/.

[32] J. Moses, “The function of FUNCTION in LISP or why the FUNARG problem should be
called the environment problem,” ACM SIGSAM Bull., no. 15, pp. 13–27, Jul. 1970.

[33] P. J. Landin, “The Mechanical Evaluation of Expressions,” Comput. J., vol. 6, no. 4, pp.
308–320, Jan. 1964.

[34] K. Erk and L. Priese, “Theoretische Informatik,” Eine umfassende Einf{ü}hrung, Berlin-
Heidelberg-New York, 2000.

[35] D. Grune and C. J. . Jacobs, Parsing Techniques: A Practical Guide, Second Edi.
Springer, 2007.

[36] J. Backus, “The syntax and semantics of the proposed international algebraic language
of the Zurich ACM-GAMM conference,” … Int. Comference Inf. …, 1959.

[37] T. Parr and R. Quong, “ANTLR: A predicated LL (k) parser generator,” Softw. Pract.
Exp., vol. 25, no. June 1994, pp. 789–810, 1995.

[38] T. Parr and K. Fisher, “LL (*): the foundation of the ANTLR parser generator,” ACM
SIGPLAN Not., pp. 425–436, 2012.

[39] M. Odersky, Programming in Scala, Second Edi. Artima Press, 2011.

[40] P. Hudak and N. Haven, “Modular Domain Specific Languages and Tools.”

[41] C. Hofer, K. Ostermann, T. Rendel, and A. Moors, “Polymorphic embedding of dsls,”
Proc. 7th Int. Conf. Gener. Program. Compon. Eng. - GPCE ’08, p. 137, 2008.

[42] “TCL/Tk Developer Web Site.” [Online]. Available: https://www.tcl.tk/.

[43] M. S. Braverman, “CASTE: A class system for Tcl,” in Proceedings of the 1st Tcl/Tk
Workshop, Univ. of Calif. at Berkeley,(June, 1993), 1993.

[44] G. Neumann and S. Sobernig, “An Overview of the Next Scripting Toolkit Next Scripting
Framework (NSF),” Tcl/Tk 2011 Conf., no. October, 2011.

[45] G. Neumann and U. Zdun, “XOTCL, an object-oriented scripting language,” 1998.

[46] M. Nüssle, “ACCELERATION OF THE HARDWARE - SOFTWARE INTERFACE OF A
COMMUNICATION DEVICE FOR PARALLEL SYSTEMS,” 2008.

[47] N. M. Burkhardt, “A Hardware Verification Methodology for an Interconnection
Network with fast Process Synchronization,” 2012.

[48] B. U. Geib, “Hardware Support for Efficient Packet Processing,” 2012.

[49] U. Brüning, “HTAX : A Novel Framework for Flexible and High Performance Networks-
on-Chip Heiner Litz Holger Fröning.”

[50] C. Leber, “Efficient Hardware for Low Latency Applications,” 2012.

[51] “The Extensible Stylesheet Language Family (XSL).” [Online]. Available:
http://www.w3.org/Style/XSL/. [Accessed: 01-May-2014].

[52] O. Chafik, “BridJ.” [Online]. Available: https://code.google.com/p/bridj/. [Accessed:
14-Jul-2014].

[53] K. H. Jürgen Döllner, “A Generalized Scene Graph.”

[54] M. Schsnfinkel and S. Beschr, “l ber die Bausteine der mathematischen Logik.,” 1920.

[55] “Extensible Markup Language (XML) 1.0 (Fifth Edition).” [Online]. Available:
http://www.w3.org/TR/REC-xml/.

[56] E. J. O’Neil, “Object/relational mapping 2008: hibernate and the entity data model
(edm),” in Proceedings of the 2008 ACM SIGMOD international conference on
Management of data - SIGMOD ’08, 2008, p. 1351.

[57] “W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures.” [Online].
Available: http://www.w3.org/TR/xmlschema11-1/.

[58] “W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes.” [Online].
Available: http://www.w3.org/TR/xmlschema11-2/.

[59] J. Fialli and S. Vajjhala, “The Java architecture for XML binding (JAXB),” JSR, JCP,
January, 2003.

[60] J. F. Kohsuke Kawaguchi, Sekhar Vajjhala, “The JavaTM Architecture for XML Binding
(JAXB) 2.2 Final,” 2009.

[61] “XMLBeans.” [Online]. Available: http://xmlbeans.apache.org/.

[62] “JibX.” [Online]. Available: http://jibx.sourceforge.net/.

[63] D. C. <douglas@crockford.com>, “The application/json Media Type for JavaScript
Object Notation (JSON).”

[64] J. I. Villar, J. Juan, M. J. Bellido, J. Viejo, D. Guerrero, and J. Decaluwe, “Python as a
hardware description language: A case study,” in 2011 VII Southern Conference on
Programmable Logic (SPL), 2011, pp. 117–122.

[65] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis, J. Wawrzynek, and K.
Asanovi, “Chisel : Constructing Hardware in a Scala Embedded Language.”

[66] “Letter from Burnaburiash to Amenhotep IV.” [Online]. Available:
http://www.britishmuseum.org/explore/highlights/highlight_objects/me/l/clay_tablet
_letter,_egypt.aspx.

Appendix A. Software setup

LiveRun online access

The TCL environment is available for experimenting through a Scala-based web application
available online:

http://www.idyria.com/~rleys/LiveRun/index.view

The scripts presented in this thesis are listed on the web page to be loaded and executed.

The TCL runner embedded in the web application features a full stream redirection, and will
offer any generated files to be viewed online.

Thesis Sources

 The sources of this work are available on the repository located at:
https://bitbucket.org/richnou/phd

 The branch to checkout is named: final

TCL Setup and bootstrapping

To run all the examples without any issues across all TCL versions, the best option is to use a
standard TCL 8.6 distribution. The thesis repository provides a Makefile which downloads and
installs locally TCL 8.6 along with the Next Scripting Framework.

To proceed, make sure you have a GCC compiler available (Linux, or windows msys should
do), and follow these steps:

 1 #!/bin/bash

 2
 3 # Clone Thesis repository
 4 git clone https://bitbucket.org/richnou/phd rleys-phd -b final
 5
 6 # Change directory
 7 cd rleys-phd
 8
 9 # Consult README for system requirements
10 less README
11
12 # Build
13 cd external
14 make all
15
16 # Source environment
17 source odfi-manager/setup.linux.bash

http://www.idyria.com/~rleys/LiveRun/index.view
https://bitbucket.org/richnou/phd

Once done, before running any TCL script, source the setup script which will update your
command line environment to use the newly build TCL interpreter.

1 # Source environment
2 source external/odfi-manager/setup.linux.bash

Repositories

The sources of all the examples provided in this thesis, as well as the full sources of all
projects are available in a set of GIT repositories. Some text boxes are included at relevant
locations throughout this work to direct the reader to the correct repository and file path.
Here is a list of all the repositories along with their locations

Thesis Repositories

Repository Project / Content Locations
thesis Thesis sources https://bitbucket.org/richnou/phd
odfi-dev-tcl TCL common library https://github.com/unihd-cag/odfi-dev-tcl
odfi-rfg Register File generator https://github.com/unihd-cag/odfi-rfg

odfi-dev-tcl-scenegraph Scenegraph logic for SVG and flooorplaning API https://github.com/unihd-cag/odfi-dev-tcl-scenegraph

odfi-dev-hw Part design language and Hardware design utilities https://github.com/unihd-cag/odfi-dev-hw

ooxoo-core OOXOO XML binding library https://github.com/richnou/ooxoo-core

odfi-tcl-integration TCL 8.6 distribution and scala interface https://github.com/richnou/odfi-tcl-integration
odfi-modules-manager Manager tool to install ODFI libraries http://github.com/richnou/odfi-manager.git

LiveRun Website Repositories

Repository Project / Content Locations
wsb-core Messaging processor and router https://github.com/richnou/wsb-core
wsb-webapp Webapplication Framework Logic for wsb-core https://github.com/richnou/wsb-webapp
vui-core Virtual UI language for HTML Scala EDSL https://github.com/richnou/vui-core

ooxoo-core OOXOO XML binding library (With JSON IO Layer) https://github.com/richnou/ooxoo-core

odfi-tcl-integration TCL native interface library for Scala projects https://github.com/richnou/odfi-tcl-integration

https://bitbucket.org/richnou/phd
https://github.com/unihd-cag/odfi-dev-tcl
https://github.com/unihd-cag/odfi-rfg
https://github.com/unihd-cag/odfi-dev-tcl-scenegraph
https://github.com/unihd-cag/odfi-dev-hw
https://github.com/richnou/ooxoo-core
https://github.com/richnou/odfi-tcl-integration
http://github.com/richnou/odfi-manager.git
https://github.com/richnou/wsb-core
https://github.com/richnou/wsb-webapp
https://github.com/richnou/vui-core
https://github.com/richnou/ooxoo-core
https://github.com/richnou/odfi-tcl-integration

	1 Introduction
	1.1 Stakes
	1.2 Contributions

	2 Functional programing and domain specific languages
	2.1 Imperative and Functional Programming styles
	2.1.1 The Imperative programming style
	2.1.2 The Functional programming style
	2.1.2.1 An example in CLISP
	2.1.2.2 Recursive function call
	2.1.2.3 List/Elements Array processing

	2.1.3 Discussion

	2.2 Merging styles: The Scala programming language example
	2.2.1 Type definition and Type Inference
	2.2.1.1 Type Inference
	2.2.1.2 Implicits

	2.2.2 Closures and high-order functions
	2.2.2.1 Anonymous functions
	2.2.2.2 Closures
	2.2.2.3 High-order functions

	2.2.3 Currying and Partial Functions
	2.2.4 Discussion

	2.3 Domain Specific Language design: LL and LR-based parsing
	2.3.1 LL Parsing in Java: ANTLR
	2.3.2 Parsing in Scala
	2.3.3 Discussion

	2.4 Embedded Domain Specific Language (EDSL)
	2.4.1 Functional Programming for EDSL
	2.4.2 Discussion

	3 Embedded Domain Specific Language design in TCL
	3.1 The TCL programming language
	3.1.1 Namespaces and packages
	3.1.2 Self evaluation
	3.1.3 Stack frame and execution level
	3.1.4 Pitfalls

	3.2 Implementation of Closures in TCL
	3.2.1 First implementation (v1 and v2)
	3.2.1.1 Implementation
	3.2.1.2 Variable detection issue
	3.2.1.3 Run level selection
	3.2.1.4 Variable protection and implicit naming
	3.2.1.5 Limitations

	3.2.2 Second implementation (v3)
	3.2.2.1 Variable value resolution
	3.2.2.2 Variable update resolution
	3.2.2.3 Lambda support
	3.2.2.3.1 Implementation

	3.2.3 Discussion

	3.3 Embedded DSL in TCL
	3.3.1 Introduction with the incrTCL library
	3.3.2 Improved extensibility with the Next Scripting Framework (NSF)
	3.3.2.1 Switching frameworks: semantic and feature issues
	3.3.2.2 Dynamic API Enrichment
	3.3.2.2.1 Special procedures
	3.3.2.2.2 NX mixins

	3.3.3 Discussion and outlook

	4 Components for Hardware Software co-design
	4.1 Register file generator
	4.1.1 RFS: Workflow and limitations
	4.1.1.1 XML Format issues
	4.1.1.2 Implementation in C

	4.1.2 RFG implementation
	4.1.2.1 Language elements
	4.1.2.2 In-depth customisation: Attributes specification
	4.1.2.3 An example

	4.1.3 RFS backward compatibility
	4.1.4 Processing chain components
	4.1.4.1 Hierarchical address calculation
	4.1.4.1.1 Addressing strategies selection

	4.1.4.2 Verilog HDL
	4.1.4.3 Documentation
	4.1.4.4 XML output

	4.1.5 Software interface for the Java Virtual Machine using Scala
	4.1.5.1 Simple device interfacing using mmap
	4.1.5.2 Native function binding in the Java Application Space
	4.1.5.3 Scala API for RFG

	4.2 Hierarchical floorplanning for Integrated Circuits
	4.2.1 Hierarchy-centric macro placement
	4.2.2 Motivation for a generic programming interface
	4.2.3 A scene graph programming interface
	4.2.3.1 Floorplanning properties requirements
	4.2.3.2 Abstract API in TCL
	4.2.3.2.1 Abstract class hierarchy
	4.2.3.2.2 Container shape and orientation
	4.2.3.2.3 Absolute coordinates resolution

	4.2.3.3 Application interface
	4.2.3.3.1 Example: Floorplan prototyping using Library Exchange Format files

	4.2.4 Generic building blocks for floorplanning
	4.2.5 Generic data representation using SVG
	4.2.6 Real placement in Cadence Encounter
	4.2.6.1 Application interface

	4.2.7 Outlook
	4.2.7.1 Multiple tree-view support

	4.3 Part description language
	4.3.1 Language description
	4.3.1.1 Attributes
	4.3.1.2 Abstraction level improvement example: Differential Pairs
	4.3.1.3 Output generator rules

	4.3.2 Hardware description language (HDL) integration scenarios
	4.3.3 Tool integration examples
	4.3.3.1 SVG View
	4.3.3.2 Cadence capture integration
	4.3.3.2.1 Large part support: usage example of the generic group attribute

	4.3.4 Outlook and integration in actual work

	4.4 OOXOO: A dynamic XML data binding interface
	4.4.1 Data binding for XML
	4.4.1.1 Automatic data model generation and validation
	4.4.1.2 Flat binding
	4.4.1.3 Application Binding

	4.4.2 Dynamic hierarchy
	4.4.2.1 Buffers and Data units
	4.4.2.1.1 Buffers
	4.4.2.1.2 DataUnits

	4.4.2.2 Element Structural Buffer
	4.4.2.2.1 Simple Data handling
	4.4.2.2.2 Hierarchy handling

	4.4.2.3 The simple data types issue
	4.4.2.3.1 Implicit conversion trap

	4.4.2.4 Collections
	4.4.2.4.1 DataUnit production
	4.4.2.4.2 DataUnit consumption

	4.4.3 Marshalling and un-marshalling: the I/O layer
	4.4.3.1 Handling non hierarchical buffer levels: the collection case
	4.4.3.2 XML I/O
	4.4.3.3 JSON I/O

	4.4.4 Register file application interface
	4.4.4.1 Register file software interaction characteristics
	4.4.4.1.1 Read-Modify-Write support
	4.4.4.1.2 Scalable Multiple register file access

	4.4.4.2 The Register file OOXOO interface
	4.4.4.2.1 The value buffer
	4.4.4.2.2 The Device Buffer
	4.4.4.2.3 The Field value

	4.4.4.3 The generic transaction extension
	4.4.4.3.1 The transaction buffer
	4.4.4.3.2 Transaction State management
	4.4.4.3.3 Target host selection: Transaction initiator

	4.4.4.4 Final ValueBuffer configuration

	4.4.5 Conclusion

	5 Conclusion and Outlooks
	5.1 Abstraction in hardware description languages
	5.2 Design flow libraries open sourcing

	Appendix A. Software setup

