276 research outputs found

    Proposal for demonstrating the Hong-Ou-Mandel effect with matter waves

    Get PDF
    The Hong-Ou-Mandel (HOM) effect is a striking demonstration of destructive quantum interference between pairs of indistinguishable bosons, realised so far only with massless photons. Here we propose an experiment which can realise this effect in the matter-wave regime using pair-correlated atoms produced via a collision of two Bose-Einstein condensates and subjected to two laser induced Bragg pulses. We formulate a novel measurement protocol appropriate for the multimode matter-wave field, which---unlike the typical two-mode optical case---bypasses the need for repeated measurements under different displacement settings of the beam-splitter, thus dramatically reducing the number of experimental runs required to map out the interference visibility. The protocol can be utilised in related matter-wave schemes; here we focus on condensate collisions and by simulating the entire experiment we predict a HOM-dip visibility of ~69%. By being larger than 50%, such a visibility highlights strong quantum correlations between the atoms and paves the way for a possible demonstration of a Bell inequality violation with massive particles in a related Rarity-Tapster setup.Comment: Essentially the same version as v2, except in Nature Communications style; for Supplementary Information see the source fil

    Proposal for a motional-state Bell inequality test with ultracold atoms

    Get PDF
    We propose and theoretically simulate an experiment for demonstrating a motional-state Bell inequality violation for pairs of momentum-entangled atoms produced in Bose-Einstein condensate collisions. The proposal is based on realizing an atom-optics analog of the Rarity-Tapster optical scheme: it uses laser-induced Bragg pulses to implement two-particle interferometry on the underlying Bell-state for two pairs of atomic scattering modes with equal but opposite momenta. The collision dynamics and the sequence of Bragg pulses are simulated using the stochastic Bogoliubov approach in the positive-P representation. We predict values of the Clauser-Horne-Shimony-Holt (CHSH) parameter up to S~2.5 for experimentally realistic parameter regimes, showing a strong violation of the CSHS-Bell inequality bounded classically by S<2.Comment: Final published version; 11 pages, 6 figure

    Sensitivity to thermal noise of atomic Einstein-Podolsky-Rosen entanglement

    Get PDF
    We examine the prospect of demonstrating Einstein-Podolsky-Rosen (EPR) entanglement for massive particles using spin-changing collisions in a spinor Bose-Einstein condensate. Such a demonstration has recently been attempted by Gross et al. [Nature (London) 480, 219 (2011)] using a condensate of Rb-87 atoms trapped in an optical lattice potential. For the condensate initially prepared in the (F, m(F)) = (2,0) hyperfine state, with no population in the m(F) = +/- 1 states, we predict a significant suppression of the product of inferred quadrature variances below the Heisenberg uncertainty limit, implying strong EPR entanglement. However, such EPR entanglement is lost when the collisions are initiated in the presence of a small (currently undetectable) thermal population (n) over bar (th) in the m(F) = +/- 1 states. For condensates containing 150-200 atoms, we predict an upper bound of (n) over bar (th) similar or equal to 1 that can be tolerated in this experiment before EPR entanglement is lost

    Verification of a many-ion simulator of the Dicke model through slow quenches across a phase transition

    Full text link
    We use a self-assembled two-dimensional Coulomb crystal of ∼70\sim 70 ions in the presence of an external transverse field to engineer a simulator of the Dicke Hamiltonian, an iconic model in quantum optics which features a quantum phase transition between a superradiant/ferromagnetic and a normal/paramagnetic phase. We experimentally implement slow quenches across the quantum critical point and benchmark the dynamics and the performance of the simulator through extensive theory-experiment comparisons which show excellent agreement. The implementation of the Dicke model in fully controllable trapped ion arrays can open a path for the generation of highly entangled states useful for enhanced metrology and the observation of scrambling and quantum chaos in a many-body system.Comment: 6 + 5 pages, 2 + 5 figures. arXiv admin note: substantial text overlap with arXiv:1711.0739
    • …
    corecore