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Proposal for a motional-state Bell inequality test with ultracold atoms
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We propose and theoretically simulate an experiment for demonstrating a motional-state Bell inequality
violation for pairs of momentum-entangled atoms produced in Bose-Einstein condensate collisions. The proposal
is based on realizing an atom-optics analog of the Rarity-Tapster optical scheme: it uses laser-induced Bragg
pulses to implement two-particle interferometry on the underlying Bell state for two pairs of atomic scattering
modes with equal but opposite momenta. The collision dynamics and the sequence of Bragg pulses are simulated
using the stochastic Bogoliubov approach in the positive-P representation. We predict values of the Clauser-
Horne-Shimony-Holt (CHSH) parameter up to S � 2.5 for experimentally realistic parameter regimes, showing
a strong violation of the CSHS-Bell inequality bounded classically by S � 2.
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I. INTRODUCTION

Bell inequalities [1] have arguably been regarded as “the
most profound discovery in science” [2]. They provide a
fundamental distinction between local hidden-variable (LHV)
descriptions of physical reality and the description based
on quantum mechanics wherein the concept of nonlocal
entanglement is a fundamental ingredient. Violations of Bell
inequalities, which reject all LHV theories and attest for the
validity of quantum mechanics, have been demonstrated in nu-
merous experiments with massless photons [3–6], but in only
a handful of experiments involving massive particles [7,8]. In
addition, all massive particle experiments have so far been
restricted to exploiting entanglement between internal (spin)
degrees of freedom, but never between external (motional)
degrees of freedom such as translational momentum. Here,
we propose and simulate a matter-wave experiment which,
for the first time, can demonstrate a Bell inequality violation
for pairs of momentum-entangled ultracold atoms produced
in a collision [9–12] of two Bose-Einstein condensates
(BECs). In such a motional-state Bell inequality test, particle
masses become directly relevant, thus enabling extensions of
fundamental tests of quantum mechanics into regimes which
may involve couplings to gravitational fields and hence find
connections to theories of gravitational decoherence [13].
This is important in view of future possible tests of quantum
mechanics or its modifications (which currently go beyond
established theories) in an attempt to resolve the current
incompatibility of quantum mechanics and the theory of
gravity.

The original Bell inequality was formulated by John
Bell [1] in response to Einstein, Podolsky, and Rosen’s (EPR)
argument [14] that, under the premises of local realism,
quantum mechanics appears to be incomplete and hence must
be supplemented by hidden variables in order to explain the
“spooky-action-at-a-distance” due to entanglement between
spacelike separated particles. The first conclusive experimental
demonstrations of Bell inequality violations with photons
were reported in the early 1980s through to 1990s [3–6]
and used sources of pair-correlated photons, such as from
a radiative cascade or parametric down-conversion. It took
almost another two decades before the first massive-particle
Bell violations emerged, utilizing pairs of trapped ions [7] or

proton pairs from the radiative decay of metastable 2He [8].
These experiments all relied on entanglement between the
internal degrees of freedom—either the photon polarizations
or the particle spins, with the notable exception of the Rarity-
Tapster experiment [5], which explored entanglement between
photon momenta (see also [15]).

In recent years, there has been an increasing number of ex-
periments, particularly in the field of ultracold atoms [16–18]
and optomechanics [19], generating and quantifying various
forms of massive-particle entanglement [20,21]. However,
these should be distinguished from experiments designed to
rule out LHV theories via a Bell inequality violation—the
most stringent test of quantum mechanics. Ultracold atoms,
nevertheless, provide a promising platform for extending these
experiments towards Bell inequality tests [22,23], due to their
high degree of isolation from the environment and the existing
high degree of control over system parameters, including the
internal and external degrees of freedom.

Our proposal for a motional-state Bell inequality uses pair-
correlated atoms from colliding Bose-Einstein condensates
and in this respect represents an ultimate successor to re-
cent experiments demonstrating sub-Poissonian relative atom
number statistics, violation of the classical Cauchy-Schwartz
inequality [11,12], atomic Hong-Ou-Mandel effect [24,25],
and a recent theoretical proposal for demonstrating the EPR
paradox [26] using the same collision process. A closely
related process of dissociation of diatomic molecules has
been recently proposed in Ref. [22] for demonstrating a
Bell violation based on energy-time entanglement; the same
process of molecular dissociation was previously discussed
in Ref. [27] in the context of the EPR paradox for atomic
quadrature measurements.

II. PROPOSED ATOMIC RARITY-TAPSTER SETUP

The schematic diagram of the proposed experiment is
shown in Fig. 1. A highly elongated (along the x axis)
BEC is initially split into two counterpropagating halves with
momenta ±k0 along z in the center-of-mass frame [9,10].
Constituent atoms of the condensate undergo binary elastic
s-wave scattering and populate a nearly spherical scattering
halo (of radius kr � 0.95|k0|) of pair-correlated atoms [10]
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FIG. 1. (Color online) Schematic diagram of the collision ge-
ometry and the proposed adaptation of the Rarity-Tapster scheme.
(a) The two condensates in position space, counterpropagating along
the z axis with mean momenta ±k0, are shown in the left upper corner;
the same condensates in momentum space (or after a time-of-flight
expansion) have a pancake shape and are shown on the north and south
poles of the spherical halo of scattered atoms. The counterpropagating
(along y) Bragg lasers are tuned to couple and transfer the population
between two pairs of momentum modes, such as the pair (p,q) and
(−q,−p), indicated on the equatorial plane of the scattering halo.
A similar quartet of modes (not shown for clarity), coupled by the
same Bragg lasers, can be identified on any other plane obtained by
rotating the equatorial plane by an angle θ around the y axis; together,
all these quartets of modes form two opposing rings shown in red. (b)
The Rarity-Tapster scheme for implementing the π and π/2 Bragg
pulses on pairs of momentum modes emanating from the source (S)
and the arrangement of two independent relative phase setting φL and
φR (respectively, between p and q, and between −p and −q) imposed
in the left and the right arms of the setup. After being mixed by the
final π/2 pulse, the output modes are detected by four atom detectors
Di (i = 1,2,3,4) and different coincidence counts Cij are measured
for calculating the CHSH-Bell parameter S.

via the process of spontaneous four-wave mixing. Previous
experiments and theory [9–12,28] have shown the existence of
strong atom-atom correlation between pairs of diametrically
opposite momentum modes, such as (p,−p) and (q,−q)
(shown in Fig. 1 on the equatorial plane of the scattering halo),
similar to the correlation between twin photons in parametric
down-conversion [4–6]. After the end of the collision, we
apply two separate Bragg pulses (π and π/2) tuned to couple
uncorrelated atoms from each respective pair, namely, (p,q)
and (−p,−q). The Bragg pulses replicate the atom optics
analogs of a mirror and a beam splitter [see Fig. 1(b)], thus
realizing the two interferometer arms of the Rarity-Tapster
optical setup [5] (see also Ref. [29], which proposes the same
scheme for implementing phase-sensitive measurements with
ultracold atoms). A variable phase shift is additionally applied
before the beam-splitter (π/2) pulse to the two lower arms

of the interferometer, corresponding to a relative phase shift
of φL between −p and −q, and φR = φL + φ between q
and p. This replicates the polarizer angle setting or relative
phase settings in the optical Bell tests of Refs. [3,5], and
can be realized by means of introducing a relative phase φL

between the two counterpropagating Bragg lasers that realize
the π pulse, combined with an additional relative phase shift
φ between the left and the right arms of the interferometer,
implemented by, e.g., the well-established technique of optical
phase imprinting [30].

In the low-gain regime of atomic four-wave mixing (see
below), this process approximately realizes a prototypical Bell
state of the form

|�〉 = 1√
2

(|1p,1−p〉 + |1q,1−q〉), (1)

which corresponds to a pair of atoms in a quantum superposi-
tion of belonging to either the momentum modes p and −p or
q and −q. By measuring appropriate second-order correlation
functions using atom-atom coincidences between certain pairs
of atom detectors Di (i = 1,2,3,4), for a chosen set of
applied phases φL and φR , one can construct (see below) the
CHSH-Bell parameter S for the Clauser-Horne-Shimony-Holt
(CHSH) version of the Bell inequality [3,31]. The choice of
phase settings φR and φL gives rise to nonlocality in the vein
of the original EPR paradox as atom-atom coincidences are
intrinsically dependent on both phase settings, analogous to
choosing polarization directions in archetypal optics experi-
ments [3]. Indeed, the Rarity-Tapster interferometric scheme
can be mapped to a spin-1/2 or polarization-entangled sys-
tem [3], wherein choosing the phases φL and φR directly con-
trols the polarization basis in which each measurement is made.

Apart from coupling two pairs of momentum modes, (p,q)
and (−q,−p), shown on the equatorial plane of Fig. 1(a), the
Bragg pulses couple many other pairs of scattering modes
that have the same wave-vector difference of 2kr ≡|p − q|=
|(−p) − (−q)|. Quartets of such modes, forming independent
Bell states, can be identified on any other plane obtained from
the equatorial plane by rotating it by an angle θ around the
y axis. Atom-atom coincidences between these modes can
therefore be used as independent measurements for evaluating
the respective CHSH-Bell parameter S. Averaging over many
coincidence counts obtained in this way on a single scattering
halo (in addition to averaging over many experimental runs)
can be used to increase the signal-to-noise ratio and ultimately
help the acquisition of a statistically significant result for S.

III. SIMPLE TOY MODEL

Before presenting the results of our simulations, we make a
brief diversion to discuss an important difference between the
ideal prototype Bell state of the form of Eq. (1) and that which
corresponds to the output of the simplest model of four-mode
optical parametric down-conversion, to which our system
can be reduced in its most rudimentary approximation (see
Refs. [28,32] and Appendix A). The Hamiltonian describing
this process [33,34] can be written as Ĥ = �g(â†

1â
†
2 + â

†
3â

†
4 +

H.c.), where g > 0 is a gain coefficient, related in our context
to the density ρ0 of the initial source condensate (assumed
uniform) and the s-wave interaction strength U = 4π�

2a/m
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through g = Uρ0/� [28,32], where a is the s-wave scattering
length. The output state of this model (for an initial vacuum
state for all four modes) in the Schrödinger picture can be
written in terms of an expansion in the Fock-state basis
as [24,35]

|�〉 = (1 − α2)
∞∑

k,m=0

α(k+m)|k〉1|k〉2|m〉3|m〉4, (2)

where α = tanh(gt) and t is the collision duration. In the
weak-gain regime, which corresponds to α � gt and hence an
average mode occupation in each of the four modes (〈â†

i âi〉 ≡
n = sinh2(gt), i = 1,2,3,4) of n � α2 = (gt)2 � 1, the sum
over Fock states can be truncated to lowest order in α to

|�〉 ∝ |0〉1|0〉2|0〉3|0〉4

+α(|1〉1|1〉2|0〉3|0〉4 + |0〉1|0〉2|1〉3|1〉4). (3)

Taking into account the fact that the contribution from the
pure vacuum state (the first term) does not affect the outcome
of any correlation (coincidence) measurements (except for
reducing the absolute data acquisition rate through multi-
ple experimental realizations), we can further approximate
this state by |�〉 ∝ α(|1〉1|1〉2|0〉3|0〉4 + |0〉1|0〉2|1〉3|1〉4).
Equation (1) corresponds to this state in a shorthand notation.
Such a state can itself be mapped to the archetypical Bell
state |�+〉 = 1√

2
(|+〉L|−〉R + |−〉L|+〉R) in the polarization

or spin-1/2 Ŝz basis, where the subscript (L,R) refers to the
left and right arms of the interferometer and + (−) refer to the
upper (lower) paths, in terms of the diagram of Fig. 1(b) of the
main text.

This ideal Bell state gives a maximal value of S = 2
√

2
(for a definition of the CHSH-Bell parameter S, see Sec. IV)
and hence a maximal Bell violation (S > 2) by definition.
However, in general, when using spontaneous parametric
down-conversion as a suitable source of pair correlated
particles, one must keep in mind the contribution from the
higher-order Fock states (whose relative weight is very small
for n � 1, implying that the contribution of events that
produce, e.g., two or more photons in each of the correlated
modes is extremely unlikely), leading to a breakdown of the
mapping of the full state Eq. (2) to Eq. (1) and thus a reduction
in S from the maximum value of 2

√
2 to

S = 2
√

2
1 + n

1 + 3n
. (4)

This expression corresponds, in fact, to the full output
state, Eq. (2), without any truncation of higher-order Fock
states, and hence is valid for arbitrary n; it follows (see
Appendix A) from the maximally valued anomalous moment
|m|2 ≡ |〈â1â2〉|2 = |〈â3â4〉|2 = n(n + 1), which is the case for
this simple parametric down-conversion model [32], where
n = sinh2(gt).

Equation (4) is an insightful result from the simplest
analytic treatment as it shows the scaling of S with the mode
population: for n � 1 we indeed obtain a nearly maximal
Bell violation, S � 2

√
2 while we find an upper bound

of n = ncr = (
√

2 − 1)/(3 − √
2) � 0.26 beyond which the

violation is no longer observed as S � 2 for n � ncr. We thus
conclude that, for a large Bell violation, it is necessary to

work in the low gain, low mode occupation regime of n � 1,
which has, however, a practical inconvenience of requiring a
large number of repeated experimental runs for achieving a
statistically significant data acquisition rate.

IV. STOCHASTIC BOGOLIUBOV SIMULATIONS:
RESULTS AND DISCUSSION

To simulate the generation and detection of Bell states
via the proposed scheme we use the stochastic Bogoliubov
approach in the positive-P representation [10,36], in which the
scattered atoms are described by a small fluctuating component
δ̂(r,t) in the expansion of the full field operator �̂(r,t) =
ψ0(r,t) + δ̂(r,t), where ψ0(r,t) is the mean-field component
describing the source condensate assumed to be in a coherent
state of total average number N , initially in the ground state of
the confining trap potential. This approach has previously been
used to accurately model a number of condensate collision
experiments, including the measurement and characterization
of atom-atom correlations via sub-Poissonian relative number
statistics [11], violation of the classical Cauchy-Schwarz
inequality [12], and more recently in a theoretical proposal
for demonstrating an atomic Hong-Ou-Mandel effect [24].
The positive-P representation has also been used in Ref. [37]
for direct probabilistic sampling of an idealized, polarization-
entangled Bell state to show how a Bell inequality violation
can be simulated using the respective phase-space distribution
function. Complementary to Ref. [37], we do not assume any
pre-existing Bell state in our analysis, but adopt an operational
approach of calculating a set of pair-correlation functions
Cij that define the CHSH-Bell parameter S, after real-time
simulations of the collision dynamics and the application
of Bragg pulses. (For the most recent formulation of the
stochastic positive-P equations that we simulate, including
the application of the lattice potential imposed by the Bragg
lasers, see the Methods section of Ref. [24].)

The CHSH-Bell parameter S corresponding to our mea-
surement protocol, performed for four pairs of phase settings,
is defined as [5,31]

S = |E(φL,φR) − E(φL,φ′
R) + E(φ′

L,φR) + E(φ′
L,φ′

R)|,
(5)

where

E(φL,φR) ≡ C14 + C23 − C12 − C34

C14 + C23 + C12 + C34

∣∣∣∣
φL,φR

. (6)

Here, the correlation functions Cij are given by Cij =〈N̂iN̂j 〉,
where the operator N̂i(t)=

∫
V(ki )

d3kn̂(k,t) corresponds to
the number of atoms detected in a detection bin with
dimensions 
kd (d = x,y,z) and volume V(ki) = ∏

d 
kd ,
centered around the targeted momenta ki (i =1,2,3,4); the
set of momenta {k1,k2,k3,k4} correspond, respectively, to
{p,−p,q,−q} used in the diagram of Fig. 1, while n̂(k,t) =
â†(k,t)â(k,t) is the momentum space density, with â(k,t)
being the Fourier component of the field operator δ̂(r,t)
describing the scattered atoms. The CHSH-Bell inequality
states that any LHV theory satisfies an upper bound given by
S � 2, irrespective of the phase settings φL, φR , φ′

L, and φ′
R .
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FIG. 2. (Color online) Illustration of typical results for the col-
lisional halo in momentum space from the stochastic Bogoliubov
approach in the positive-P representation. The simulations were
performed using the XMDS2 software package, see Ref. [38]. Shown
here are three orthogonal slices (cuts through the origin) of the 3D
momentum distribution n(k) at the end of the collision; the saturated
(white) regions of the color map correspond to the high-density
colliding condensates. The central figure is a discretized scatter plot
of the 3D data (shown only for illustrational purposes and comparison
with Fig. 1), in which the dots (pixels) represent random samples of
the average, but still fluctuating within the sampling error, density
distribution binned into pixels whose color coding scales with the
atom number in the bin (only four color grades were used for clarity).
For quantitative details of the same data on the equatorial plane, see
Fig. 3.

The results of our numerical simulations of the collision
dynamics and ensuing Bragg pulses are shown in Figs. 2 and 3.
Figure 2 illustrates the momentum space density distribution
of the collisional halo, while Fig. 3 focuses on the quantitative
results on the equatorial plane, for the following: (a) at the
end of the collision; (b) after the application of the π pulse;
and (c) after the π/2 pulse. The upper and lower semicircles
in (b) correspond to Bragg-kicked populations between the
targeted momenta around p and q, and between −q and
−p, while (c) shows the final distribution after mixing. The
density modulation in (c) (in parts of the halo lying outside the
vicinity of the targeted momentum modes, where the transfer
of population during the π pulse is not 100% efficient) is
simply the result of interference between the residual and
transferred atomic populations upon their recombination on
the beam splitter [24].

We next use the stochastic Bogoliubov simulations to
calculate the atom-atom correlations Cij , for the optimal
choice of phase angles φL =0, φ′

L =π/2, φR =π/4, and
φ′

R =3π/4 [5]. The dependence of the resulting correlation
coefficient E on the relative phase φ≡φL−φR is shown in
Fig. 3(d); it displays a sinusoidal dependence E0 cos φ which
can also be predicted from a simple Gaussian-fit analytic model
(see Appendix B):

E(φL,φR) = h
∏

d αd

h
∏

d αd + 2
∏

d (λd )2
cos(φL − φR). (7)

In this model, Cij is expressed in terms of the density-density
correlation function G(2)(k,k′,t1)=〈â†(k,t1)â†(k′,t1)â(k′,t1)
â(k,t1)〉 after the collision as Cij=

∫
V(ki )

d3k
∫
V(kj )d

3k′G(2)

(k,k′,t1), and we use the fact that G(2)(k,k′,t1) itself is typically
well approximated [9,12,39] by a Gaussian function of
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FIG. 3. (Color online) Momentum distribution n(k) of scattered atoms on the equatorial plane of the halo and the correlation coefficient
E. Momentum distribution is shown (a) after the collision, at t1 =65 μs; (b) after the π pulse chosen here to be a Gaussian, centered at
t2 =79 μs and having a duration (rms width) of τπ =3.5 μs; and (c) after the final π/2 pulse, centered at t3 =139 μs and having a duration of
τπ/2 =3.5 μs. The momentum axes kx,y are normalized to the collision momentum k0 ≡|k0| (in wave-number units), which in our simulations
is k0 =4.7×106 m−1. The plotted results are for an initial BEC containing a total average number of N =1.9×104 atoms of metastable helium
(4He∗) prepared in a harmonic trap of frequencies (ωx,ωy,ωz)/2π = (64,1150,1150) Hz and colliding with the scattering length of a=5.3 nm;
all these parameters are very close to those realized in recent experiments [10–12]. The optimal timing of the final Bragg pulse differs slightly
for condensates with different N ; in particular, t3 ranged from 135.5 to 139 μs for the data in Fig. 4 (see Appendix B). The data are averaged
over ∼30 000 stochastic trajectories on a spatial lattice of 722 × 192 × 168 points. Panel (d) shows the correlation coefficient E(φL,φR) as
a function of φ≡φL−φR , for the same detection bin sizes as in Fig. 4, blue circles. The data points are from numerical simulations (error
bars of two standard deviations, representing sampling errors from 360 stochastic runs, are within the marker size), including averaging over
∼370 quartets of distinct detection volumes on the two opposing rings of the scattering halo shown in Fig. 1, while the solid line is from the
Gaussian-fit model, Eq. (7). A maximum amplitude of E0 >1/

√
2 (outside the shaded region) corresponds to a correlation strength that can

lead to a Bell inequality violation, given the underlying sinusoidal behavior.
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FIG. 4. (Color online) CHSH-Bell parameter S as a function
of the correlation strength h (see text); the value of h can be
controlled by varying the total average atom number N in the
initial BEC. For the data points shown here, N was varied between
1.9×104 (largest h) and 7.4×104 (smallest h). The two sets of data
correspond to two different detection bin sizes: (
kx,
ky,
kz)=
(0.052,0.53,0.47) μm−1 circles (blue) and (0.12,1.24,1.10) μm−1

squares (red). The vertical error bars on data points indicate the
stochastic sampling errors [40]; the horizontal error bars are the
sampling errors on the value of h. The results are compared to
the analytic predictions (solid lines) of Eq. (8); uncertainty (shaded
regions) is due to the uncertainty in determining σd . The inset shows
the explicit dependence of S on 
kx (in units of 2σx =0.068 μm−1),
for fixed (
ky,
kz)= (0.77σy,0.89σz)= (0.53,0.47) μm−1 and N =
1.9 × 104 (h � 27). For a typical time-of-flight expansion time of
texp ∼ 300 ms, which maps the atomic momentum distribution into
position space density distribution, and which is when the atoms are
experimentally detected, these detection bin sizes convert to position
space distances of (
x,
y,
z) � (0.32,2.5,2.2) mm (where we
have taken λx = 1 for definitiveness), which are several times larger
than the three orthogonal resolutions of multichannel plate detectors
used in 4He∗ experiments [12,41].

the form G(2)(k,k′,t1)=n̄2(1 + h
∏

d exp[−(kd + k′
d )2/2σ 2

d ]),
where we have assumed that the density of scattered atoms
is approximately constant over the integration volume and
is given by n̄. Thus, in Eq. (7), h is the height (above the
background level of n̄2) of the pair correlation G(2)(k,k′,t1),
σd is the rms width, λd ≡ 
kd/2σd is the relative bin size, and
αd ≡ (e−2λ2

d − 1) + √
2πλderf(

√
2λd ). The particular form of

E in Eq. (7) is obtained from this model by assuming the
subsequent “mirror” and “beam-splitter” mix the coupled
modes exactly. The visibility of the correlation coefficient E

bounds the maximum attainable violation of the CHSH-Bell
inequality for a specific set of phase settings, with a lower limit
of E0 = 1/

√
2 required for S > 2, and a maximum value of

E0 = 1 corresponding to S = 2
√

2.
The results of calculations of the CHSH-Bell parameter

S are shown in Fig. 4, where we explore its dependence on
the strength of atom-atom correlations and the detection bin
size. The dependence on the correlation strength, for a fixed
collision velocity and trap frequencies, reflects essentially the
dependence on the peak density of the initial BEC, which itself
depends on the total average number of atoms loaded in the

trap [28]. The results of stochastic simulations in Fig. 4(b) are
plotted alongside the predictions of the Gaussian-fit analytic
model, which from Eq. (7) gives

S = 2
√

2
h

∏
d αd

h
∏

d αd + 2
∏

d (λd )2
. (8)

As we see, the analytic prediction agrees reasonably well with
the numerical results; both show that strong Bell violations are
favored both for (i) smaller condensates, leading to lower mode
population in the scattering halo and thus higher correlation
strength, and (ii) smaller bin sizes, for which the strength of
atom number correlations does not get diluted due to the finite
detection resolution. The discrepancies between the numerical
and analytic results are due to the fact that the analytic model
assumes uniform halo density across the integration bin and
perfect Bragg pulses, both in terms of the intended transfer
efficiency and its insensitivity to the momentum offsets within
the integration bin, whereas the numerical simulations are
performed with realistic Bragg pulses acting on the actual
inhomogeneous scattering halo. Nevertheless, an important
conclusion that we reach here is that the Bell violation in our
scheme can tolerate experimentally relevant imperfections that
are often ignored in oversimplified models.

The general form of Eq. (8) displays similar behavior to
that obtained in the simple model of four-mode parametric
down-conversion, Eq. (4). As previously, it gives a simple
and insightful picture in terms of the dependence of the
expected value of S on just a few parameters at the end of
the collision—the correlation widths, the correlation height,
and the detection bin size. As we see from the comparison
of the predictions of Eq. (8) to the actual numerical results in
Fig. 4, the agreement is remarkable for such a simple analytic
result. The scaling with the halo mode occupation, as that
in Eq. (4), is no longer explicit, but it now emerges most
simply through the detection bin size, wherein a smaller bin
size gives a smaller average number of detected atoms and
hence larger values of S as seen in the inset of Fig. 4. Similarly,
such a scaling emerges through the height of the correlation
h: the correlation is typically stronger for four-wave mixing
regimes that produce a collisional halo of smaller density
or smaller bin occupation (for a fixed bin size), leading to
larger values of S. In the four-mode down-conversion model,
where the relevant normalized pair-correlation function is
given by g

(2)
12 =g

(2)
34 =2 + 1/n [32] and therefore h=1+1/n,

this corresponds to h  1, which is again the regime of low
mode occupation n � 1 as we discussed previously.

We further emphasize that the general applicability of our
Gaussian-fit analytic model and, in particular, the relatively
simple result of Eq. (8) are not limited to condensate collision
experiments. Rather, these results can be applied to any other
ultracold atom experiment—a candidate for a Bell test—as
long is it produces two pair-correlated “scattering” modes that
can be approximated by Gaussian correlation functions and
subsequently subjected to mirror and beam-splitter pulses to
realize an atomic Rarity-Tapster interferometer.

V. CONCLUSIONS

In summary, we have shown that condensate collisions are a
promising platform for testing motional-state Bell inequalities
with massive particles. We predict a CHSH-Bell inequality
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violation (S > 2) for a range of parameters well within
currently accessible experimental regimes.

Our numerical simulations take into account a range of
physically important processes beyond the common analysis
of oversimplified toy models. Importantly this includes (i) the
multimode nature of the colliding Bose-Einstein condensates
and subsequent scattering halo; (ii) the spatial expansion and
separation of the source condensates during the collision and
hence during the pair production process (for comparison, the
“pump mode” in the optical down-conversion case remains
practically unchanged in the required weak-gain regime); and
(iii) the fact that the atomic mirror and beam-splitter Bragg
pulses act, in fact, as momentum kicks (translations) rather
than as actual (optical) reflections. By modeling the real-time
application of the Bragg pulses, without assuming ideal π and
π/2 pulses (100 and 50% transfer, respectively), we implicitly
allow for small amounts of losses (hence decoherence) into
higher-order Bragg scattering modes. We also take into
account the nontrivial effects of phase dispersion, absent in
photonic experiments, by optimizing the timing and appli-
cation of the Bragg pulses in the interferometer. Remarkably,
many of these effects can also be captured via the semianalytic
Gaussian-fit model of Eqs. (7) and (8), which is found to be
both qualitatively and quantitatively rather accurate.

Such detailed quantitative analysis is important for a
theoretical proposal to be relevant to possible experimental
demonstrations of a Bell inequality violation. This is further
supported by our analysis in terms of finite detector resolu-
tion and the utilization of multiple quartets of bins in our
calculations: increasing the rate of data acquisition is crucial
for experiments with ultracold atoms, which typically have
relatively slow duty cycles of the order of half a minute (for
comparison, the repetition rates of a pump laser in modern
optical parametric down-conversion experiments can reach
tens of MHz).

A laboratory demonstration of such a violation would
be a major advance in experimental quantum physics as it
would lead to a better understanding of massive particle
entanglement involving motional states. Apart from extending
foundational tests of quantum mechanics into new regimes,
such experiments can potentially lead to an opening of a
new experimental agenda, such as testing the theories of
decoherence due to coupling to gravitational fields [13] and
answering questions that are relevant to the understanding of
the interplay between quantum theory and gravity and their
possible unification.
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APPENDIX A: UNDEPLETED PUMP APPROXIMATION
AND RELATION TO THE MODEL OF SPONTANEOUS

PARAMETRIC DOWN-CONVERSION

The simplest analytic treatment of the scheme can be made
by treating the initially split condensate in the undepleted

pump approximation [28], corresponding to short collision
durations such that the number of scattered atoms is only a
small fraction of the source condensate (generally less than
10%). Treating the π and π/2 Bragg pulses as perfect mirrors
and beam splitters (i.e., simple linear transformations) applied
at t2 and t4, respectively (see main text for definitions) and
then invoking Wick’s theorem, the second-order correlation
function between the relevant pairs of detectors (chosen for
definiteness to be equal to t4 = t3 + 4τπ/2 in our simulations)
can be written as

G(2)(k1,k2,t4) = G(2)(k3,k4,t4)

= n(k1,t1)2 + |m(k1,k2,t1)|2
2

× [1 − cos(φB − φA)], (A1)

G(2)(k1,k4,t4) = G(2)(k2,k3,t4)

= n(k1,t1)2 + |m(k1,k2,t1)|2
2

× [1 + cos(φB − φA)], (A2)

where n(k,t1) = 〈â†(k,t1)â(k,t1)〉 is the average momentum
space density of scattered atoms after the collision at time
t1, which is equal for the targeted modes k1,k2,k3, and k4,
and m(k,k′,t1) = 〈â(k,t1)â(k′,t1)〉 is the average anomalous
moment. Choosing φA = 0, φ′

A = π/2, φB = π/4, and φ′
B =

3π/4 to maximize the CHSH-Bell parameter S (defined as per
the main text) we find the result

S = 2
√

2
|m(k1,k2,t1)|2

2n(k1,t1)2 + |m(k1,k2,t1)|2 . (A3)

For a maximal violation, with S = 2
√

2, one requires the
anomalous moment to satisfy |m(k1,k2,t1)|2  n(k1,t1)2,
corresponding to strong correlations between atoms scattered
to diametrically opposite momentum modes.

The anomalous moment is maximized for the case of
a homogeneous BEC in a finite box [28,32], where the
discrete mode counterpart of m(k,−k) satisfies |mk,−k|2 =
nk(1 + nk) [32]—just like in the simple four-mode model of
parametric down-conversion discussed in the main text, thus
giving the result of Eq. (4), with n = nki

(i = 1,2,3,4) being
the average mode occupation of the scattering halo after the
collision, which are all equal in this approximation.

APPENDIX B: GAUSSIAN-FIT ANALYTIC MODEL
OF CORRELATION FUNCTIONS

Beyond the simple treatment of the previous section, we
can develop a more sophisticated model of the CHSH-Bell
parameter while also taking into account the finite detector
resolution of experiments [9]. We calculate integrated pair-
correlation functions and the ensuing CHSH-Bell parameter
by using a Gaussian-fit analytic model, similar to that used
previously in Ref. [12] to model a violation of the Cauchy-
Schwarz inequality in condensate collisions. The underlying
assumption of the model is that the second-order correlation
function after the collision is well approximated by a Gaussian
G(2)(k,k′,t1) = n2(1 + h

∏
d exp[−(kd + k′

d )2/2σ 2
d ]) for k �
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−k′ and n = n(k) = n(k′) is the density of scattered atoms.
The correlation is then characterized by two parameters: the
height, h, above the background level and the correlation
width σd .

To derive an expression for S we first consider the form of
the integrated pair-correlation functions after the application
of the π/2 pulse:

Cij =〈N̂iN̂j 〉=
∫
V(ki )

d3k
∫
V(kj )

d3k′G(2) (k,k′,t4
)
, (B1)

where the integration bins are of dimension 
kd (d = x,y,z)
and volume V(ki) = ∏

d 
kd centered around the targeted
momenta ki (i = 1,2,3,4). Without loss of generality we
consider the form of the correlation C12, with the remaining
pair-correlation functions Cij being calculated in a similar
manner. Treating the Bragg pulses as idealized mirrors and
beam splitters which act instantaneously, meaning we may
set t2 = t1 and t4 = t3, we may write the generalized form of
Eq. (A1) as

G(2)(k,k′,t4) = 1
4 [4n(k,t2)2 + |m(k,k′,t2)|2 + |m(k − 2kL,k′ + 2kL,t2)|2

−m(k − 2kL,k′ + 2kL,t2)∗m(k,k′,t2)e−i(φL−φR )−i �

2m
(|k|2+|k′|2−|k−2kL|2−|k′+2kL|2)
tfree

−m(k,k′,t2)∗m(k − 2kL,k′ + 2kL,t2)ei(φL−φR )+i �

2m
(|k|2+|k′|2−|k−2kL|2−|k′+2kL|2)
tfree ], (B2)

where k ∈ V(k1) and k′ ∈ V(k2) and 
tfree ≡ t3 − t2 is defined
as the duration of free propagation between the π and π/2
Bragg pulses. Having invoked Wick’s theorem in Eq. (B2),
we may recognize that assuming the correlation function
G(2)(k,k′,t1) is a Gaussian function translates to the assump-
tion that we may model the anomalous moment as

m(k,k′,t2) ≡ n̄
√

heiθ(k,k′,t2)
∏
d

e−(kd+k′
d )2/4σ 2

d , (B3)

where the density of scattered atoms is assumed to be
approximately homogeneous across the integration volumes
and is given by the average n̄. The argument θ (k,k′,t2) of
the complex anomalous moment is dependent on the specific
model chosen for the collision, which we will elaborate upon
momentarily.

Substituting Eq. (B3) into Eq. (B2) gives the more recog-
nizable form

G(2)(k,k′,t2) = n̄2 + n̄2h

2

∏
d

exp
[ − (kd + k′

d )2/2σ 2
d

]
×{1 − cos[φL − φR + ϕ(k,k′)]}, (B4)

where

ϕ(k,k′) = θ (k − 2kL,k′ + 2kL,t2) − θ (k,k′,t2)

+ �

2m
(|k|2 + |k′|2 − |k − 2kL|2

− |k′ + 2kL|2)
tfree. (B5)

In comparison to the simple toy model of Eq. (A1) the
most important new feature of Eq. (B4) is the addition
of ϕ(k,k′), which acts as a momentum-dependent drift in
the phase settings φL and φR . As the phase settings are
chosen to maximize the CHSH-Bell parameter, this new term
can thus lead to a reduction in S. Composed of a free-
propagation component and a dependence on the argument
of the anomalous moment such an effect is similar to the
phase dispersion of two-color photons in an earlier optical
experiment of Rarity and Tapster [42].

To investigate the impact of this new term and to evaluate
the integral in Eq. (B1) one must know the form of ϕ(k,k′),
which in turn explicitly depends on the argument θ (k,k′,t2)
of the anomalous moment. In general, this is not trivial as

it requires an analytic solution of the anomalous moment
from an appropriate model for the collision. To this end,
we supplement our simple Gaussian-fit model by utilizing a
solution of the anomalous moment based on a perturbative
approach, previously used with success in Ref. [38] (albeit for
a different collision geometry—the BECs were split along the
x axis). Similar to the numerical treatment, this model takes
into account the evolution of the spatial overlap of the split
condensate wave packets; however, it does not account for the
spatial expansion of the condensates once released from the
initial trap.

To give a tractable form of the anomalous moment we
approximate the initial mean field of the unsplit condensate
as a Gaussian ψ0(x) = √

ρ0
∏

d e−x2
d /2σ 2

g,d with peak density
ρ0 and rms widths σg,d for d = x,y,z. The calculation of
the anomalous moment is then straightforward and involves
treating the wave function of the scattered atoms with a
perturbative expansion to low order. For a full derivation of
the model we refer the reader to Ref. [38]. In our solution we
may make the approximation that the box sizes are sufficiently
small such that |k − k1| � |k0| and |k′ − k2| � |k0| and
assume the condensates are completely spatially separated
before applying the π pulse, corresponding to t2/τs  1 where
τs = mσg,z/�|k0| is the time scale of separation. Under these
limits the argument of the anomalous moment may be written
as

θ (k,k′,t2) � − �

2m
(|k|2 + |k′|2)t2

+ σg,z√
π |k0|

( |k|2 + |k′|2
2

− |k0|2
)

, (B6)

which thus allows us to write the phase drift as

ϕ(k,k′) = [8|kL|2 − 4kL · (k − k′)]

×
[

�

2m
(
tfree − t2) + σg,z

2|k0|√π

]
. (B7)

Using the form of Eq. (B7) and noting that our Bragg pulses
couple only along the ky axis it is straightforward to evaluate
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the integral of Eq. (B1):

C12 = n̄2
∏
d

(
kd )2 + n̄2h

2

∏
d

σdαd

− n̄2h

2

(∏
d

σd

)
αxαzβycos (φL − φR) , (B8)

where αd ≡ (e−2λ2
d − 1) + √

2πλderf(
√

2λd ), λd ≡ 
kd/2σd ,
and

βy ≡ i

√
π

2

e−8A2|kL|2σ 2
y

4A|kL|

×
[
e−i4A|kL|
ky erf

(

ky + i4A|kL|σ 2

y√
2σy

)

− ei4A|kL|
ky erf

(

ky − i4A|kL|σ 2

y√
2σy

)

+ 2cos(4A|kL|
ky)erf(i2
√

2A|kL|σy)

]
, (B9)

with A ≡ �(
tfree − t2)/2m + σg,z/2k0
√

π . One can then
calculate the remaining correlation functions Cij in a similar
fashion to find the correlation coefficient:

E(φL,φR)= C14 + C23 − C12 − C34

C14 + C23 + C12 + C34

∣∣∣∣
(φL,φR )

= hαxβyαz

h
∏

d αd + 2
∏

d (λd )2 cos (φL − φR). (B10)

The CHSH-Bell parameter is finally given by

S = 2
√

2

∣∣∣∣ hαxβyαz

h
∏

d αd + 2
∏

d (λd )2

∣∣∣∣ . (B11)

An important result of this model is the prediction that there
exists an optimal free-propagation duration between the π and
π/2 Bragg pulses,


tfree = t2 − mσg,z

�k0
√

π
, (B12)

for which ϕ(k,k′) = 0 in Eq. (B5) for all k ∈ V(k1) and
k′ ∈ V(k2) and thus the phase settings retain their original
values throughout the integration bin. This corresponds to
A = 0 in Eq. (B9) and we then find βy = αy . Equation (B11)
is maximized under this condition and it transforms to

S = 2
√

2
h

∏
d αd

h
∏

d αd + 2
∏

d (λd )2
, (B13)

where the dependence on box size is now characterized
completely by the relative quantity λd = 
kd/2σd for all
directions, rather than the absolute length scale 
ky as in
Eq. (B11) along the y axis.

In Fig. 5(a) we plot Eq. (B11) as a function of 
tfree and

ky for the case of an initial BEC of N = 1.9 × 104 atoms
to illustrate the effects of the phase drift. As inputs to the
model, the correlation height h and correlation widths σd are
extracted from the numerical data at t1, while the rms width
σg,z is chosen by fitting the numerically calculated trapped
condensate to a Gaussian. For 
tfree satisfying Eq. (B12), S

Δtfree (μs)
20 30 40 50

E
0

0.75

0.8

0.85

0.9

0.95

(b)

80

Δtfree (μs)

60
400.2Δky/|k0|

0.1

1

0.5

0

E
0

(a)

FIG. 5. (Color online) (a) Correlation amplitude E0 predicted by
the Gaussian-fit model [Eq. (B11)] as a function of the integration
bin size 
ky and the free propagation time 
tfree. Calculations
were performed for an initial condensate of N = 1.9 × 104 atoms
and other parameters as per the main text with h and σd extracted
from the stochastic numerical results. The central ridge corresponds
to Eq. (B13) where the phase drift term ϕ(k,k′) is eliminated.
(b) Amplitude of the correlation function E0 as a function of free
propagation time 
tfree for an integration volume (
kx,
ky,
kz) =
(0.052,0.53,0.47)μm−1 and simulation parameters are as per
(a). The predictions of the Gaussian-fit analytic model Eq. (B10) (gray
shaded region) are compared to the numerical results from stochastic
simulations (black circles). The error bars on data points indicate the
stochastic sampling error of two standard deviations obtained from
∼800 trajectories, while for the analytic prediction the uncertainty in
E0 (shaded region) is due to the uncertainty in the values h and σd

extracted from the numerical simulations.

retains the maximal violation of Eq. (B13) with the strength
only declining due to a dilution of the correlation as the
integration box size 
ky increases. However, for 
tfree away
from the optimal value one sees that an increase in the
box size leads to a rapid decrease in S due to rapid drift
of the phase settings rather than a dilution of correlation.
One can see this by noting that large 
ky implies the term
8|kL|2 − 4|kL| · (k − k′) in Eq. (B5) will take large values
near the edge of the integration volume and ϕ(k,k′) is scaled by
this factor, leading to large deviations from the optimal phase
settings. This is important as it demonstrates that for poor
experimental resolution even small perturbations away from
the optimal 
tfree can lead to a quick loss of Bell violation.

Figure 5(b) shows results of stochastic numerical simula-
tions for the amplitude of the correlation function E0, where
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FIG. 6. Optimal free propagation time 
tfree for a range of initial
BEC atom number. Numerical results (black circles) are compared
to the prediction of Eq. (B12) from the perturbative model (dashed
line). The range of N in the initial BECs corresponds to those in the
main text, while the integration volume is the same as Fig. 5(b).

E(φL,φR) ≡ E0cos(φL − φR), as a function of 
tfree for the
same initial BEC. We compare these results to the predictions
of Eq. (B10) to investigate the applicability of the Gaussian-fit
model to a realistic system. We find excellent agreement, not
only for the maximum attained correlation strength but also
for the predicted optimal 
tfree. The quantitative match to
theory also implies that the underlying model for ϕ(k,k′) is a
good approximation to the form in the numerical simulations,
although this is expected to break down for larger integration
volumes where the assumptions for ϕ(k,k′) in Eq. (B7) are no
longer satisfied.

As the chosen phase angles φL and φR are shown to be
unaffected in the final form of E in Eq. (B10), it is sufficient to
numerically optimize E0 as a function of 
tfree to maximize the
Bell violation. In Fig. 6 we plot the optimal 
tfree for a variety
of initial BEC atom numbers determined from numerical
calculations and compare these to the prediction of Eq. (B12).
Once again we find good quantitative agreement between the
numeric and analytic methods. The numerically determined
optimal 
tfree here are used in the simulations of the main text
to define the timing of the application of the π/2 pulse.
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