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Sensitivity to thermal noise of atomic Einstein-Podolsky-Rosen entanglement
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We examine the prospect of demonstrating Einstein-Podolsky-Rosen (EPR) entanglement for massive particles
using spin-changing collisions in a spinor Bose-Einstein condensate. Such a demonstration has recently been
attempted by Gross et al. [Nature (London) 480, 219 (2011)] using a condensate of 87Rb atoms trapped in an
optical lattice potential. For the condensate initially prepared in the (F,mF ) = (2,0) hyperfine state, with no
population in the mF = ±1 states, we predict a significant suppression of the product of inferred quadrature
variances below the Heisenberg uncertainty limit, implying strong EPR entanglement. However, such EPR
entanglement is lost when the collisions are initiated in the presence of a small (currently undetectable) thermal
population n̄th in the mF = ±1 states. For condensates containing 150–200 atoms, we predict an upper bound of
n̄th � 1 that can be tolerated in this experiment before EPR entanglement is lost.
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I. INTRODUCTION

Entanglement has proven to be “the characteristic trait
of quantum mechanics” as first coined by Schrödinger [1].
It forms the foundations of quantum information theory
and quantum computing. Further, in interferometry entangle-
ment enables measurement precision to surpass the standard
quantum limit [2]. This is particularly important in atom
interferometry [3] as atom flux is generally limited. However,
the most important foundational trait of entanglement comes
with its role in the Einstein-Podolsky-Rosen (EPR) paradox
[4]. This requires the underlying quantum correlations to
be stronger than those satisfying the simpler inseparability
criteria. The resulting EPR-entanglement criterion confronts
the Heisenberg uncertainty relation and puts us into the context
of EPR arguments that question the completeness of quantum
mechanics and open the door to alternative descriptions of
these correlations via local hidden-variable theories [5]. The
EPR paradox for continuous-variable quadrature observables
[6] (which are analogous to the position and momentum
observables originally discussed by Einstein, Podolsky, and
Rosen) has been demonstrated in optical parametric down-
conversion [7] and most recently attempts have been made
to demonstrate [8] the paradox with ensembles of massive
particles generated by spin-changing collisions in a spinor
Bose-Einstein condensate (BEC) [9,10].

In this paper we seek to provide a theoretical treatment
of the recent experiment by Gross et al. [8], which reported
entanglement, or quantum inseparability, of two atomic
ensembles produced by spin-changing collisions in a 87Rb
BEC. For the BEC initially prepared in the (F,mF ) = (2,0)
hyperfine state, the collisions produce correlated pairs of
atoms in the mF = ±1 sublevels. The authors observed that
the resulting state was inseparable, though a measurement of
a stronger EPR-entanglement criterion was inconclusive. A
normalized product of inferred quadrature variances of 4 ± 17
was reported, whereas a demonstration of the EPR paradox
requires this quantity to be less than unity [6,11].

The short-time dynamics of the spin-mixing process, for
a vacuum initial state of the mF = ±1 atoms, is similar
to that of a spontaneous parametric down-conversion in the
undepleted pump approximation. This paradigmatic nonlinear

optical process is known to produce an EPR-entangled
twin-photon state that can seemingly violate the Heisenberg
uncertainty relation for inferred optical quadratures [6]. Such
a violation was previously observed by Ou et al. [7]. Due
to the inconclusive nature of an analogous measurement of
matter-wave quadratures in Ref. [8], we seek to perform a
theoretical analysis of spin-changing dynamics and calculate
various measures of entanglement in experimentally realistic
regimes. In particular, we focus on the sensitivity of EPR
entanglement to an initial population in the mF = ±1 sublevels
with thermal statistics. In the optical case this question is
argued to be irrelevant as at optical frequencies and room
temperatures the thermal population of the signal and idler
modes is negligible, allowing us to safely approximate them as
vacuum states. However, these considerations are inapplicable
to ultracold atomic gases. This was highlighted recently by
Melé-Messeguer et al. [12], who quantitatively predicted the
possibility of nontrivial thermal activation of the mF = ±1
sublevels in a spin-1 BEC. Accordingly, when interpreting
experimental results care must be taken in differentiating
spin-mixing dynamics initiated by vacuum noise from that
initiated by thermal noise or a small coherent seed [13]. To this
end, our modeling of the experiment of Gross et al. [8] is more
consistent with a small thermal population in the mF = ±1
sublevels rather than a vacuum initial state or small coherent
seed. From a broader perspective, the connection between
our results and the widely applicable model of parametric
down-conversion highlights the generally fragile nature of
atomic EPR entanglement to thermal noise, demonstrating that
future experiments must be refined to overcome this problem.

II. SYSTEM

The experiment of Ref. [8] starts with a BEC of 87Rb
atoms prepared in the (F,mF ) = (2,0) state and trapped in
a one-dimensional optical lattice. The lattice potential is
sufficiently deep to prevent tunneling between neighboring
wells. Furthermore, due to the relatively small number of
atoms in each well, the spin-healing length is of the order
of the spatial size of the condensate in the well, meaning
the spatial dynamics of the system are frozen, and hence
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we may treat the condensate in each well according to the
single-mode approximation [14–16]. In this approximation the
field operator ψ̂i(r) for each component i ≡mF =0,±1,±2
is expanded as ψ̂i(r)=φ(r)âi , where φ(r) is the common
spatial ground-state wave function [φi(r) ≡ φ(r)] and âi is
the respective bosonic annihilation operator.

A quadratic Zeeman shift and microwave dressing of the
mF =0 state is employed to energetically restrict the spin-
mixing dynamics to the mF =0,±1 states [8] and so for short-
time durations we may map the spin-2 system to an effective
spin-1 Hamiltonian [17] of the form Ĥ = Ĥinel + Ĥel + ĤZ,

Ĥinel = h̄g(â†
0â

†
0â−1â1 + â

†
1â

†
−1â0â0), (1)

Ĥel = h̄g(n̂0n̂1 + n̂0n̂−1), (2)

ĤZ = −p(n̂1 − n̂−1) − q(n̂1 + n̂−1), (3)

where n̂i = â
†
i âi is the particle number operator and i =0,±1

are herein referred to as the pump and the signal and idler
modes, respectively. We have ignored terms proportional to
N̂ (N̂ − 1) in Ĥ as this is a conserved quantity and contributes
only a global phase rotation. The inelastic spin-changing
collisions are described by Ĥinel and the remaining elastic
s-wave scattering terms are grouped in Ĥel, where g is the
coupling constant associated with s-wave collisions [17].
For a spin-2 system, the coupling is given by g = 6

14 (3g4 +
4g2)

∫
d3r|φ(r)|4, where gF = 4πh̄2aF /m describes s-wave

scattering with total spin F , characterized by scattering length
aF [17]. For comparison, for an actual spin-1 system the
coupling constant would be given by g = g2−g0

3

∫
d3r|φ(r)|4,

where gF = 4πh̄2aF /m. In our representation of Ĥel we have
used the fact that the relative number difference n̂1 − n̂−1 is
a conserved quantity. The interaction with the magnetic field
is described by ĤZ, where the linear and quadratic Zeeman
effects are parametrized, respectively, by p = μBB0/2 and
q = p2/h̄ωHFS [18], with ωHFS/2π ≈ 6.835 GHz being the
hyperfine splitting frequency of 87Rb [19]. For our initial
conditions the relative number difference n̂1 − n̂−1 will always
be zero and hence we may ignore the linear Zeeman effect.
We may also redefine the parameter q to absorb the effects of
microwave level dressing (used by Gross et al. [8]) and any
other fixed energy shift between the mF = 0 and ±1 energy
levels.

Simple analogies between the states of the signal and
idler modes in spin-changing collisions and optical parametric
down-conversion consider only Ĥinel in the undepleted pump
approximation; however, competing mean-field (Ĥel) and
Zeeman (ĤZ) effects lead to additional dynamics [20] due to
dephasing. The full Heisenberg operator equations of motion
are given by

dâ0

dτ
= −i[2â−1â1â

†
0 + (n̂1 + n̂−1)â0], (4)

dâ±1

dτ
= −i

[
â2

0 â
†
∓1 + (n̂0 − q/g)â±1

]
, (5)

where we have introduced τ = gt as dimensionless time.
We see that the phase accrued in the â±1 modes grows
proportionally to n̂0 − q/g, while for the â0 mode the phase
grows proportionally to n̂1 + n̂−1. In the short-time undepleted
pump approximation [21], this is equivalent to a phase rotation

â±1 → â±1exp[i(N0 − q/g)τ ], where N0 = 〈n̂0(0)〉 is the
initial population of the mF = 0 component. This rotation
leads to a dynamical phase mismatch between the spinor
components that decelerates the pair-production process [20].
To prevent phase mismatch in the short-time limit one can
choose q =gN0, in which case Eqs. (4) and (5) reduce to those
of resonant down-conversion [21].

III. RESULTS AND DISCUSSION

A. Population dynamics

We first analyze the spin-changing dynamics for the case
of a vacuum initial state for the signal and idler modes and
a coherent state |α0(0)〉 for the pump mode with an initial
number of atoms N0 = |α0(0)|2. This case can be treated in a
straightforward manner (see, e.g., Ref. [11]) by diagonalizing
the full Hamiltonian in the truncated Fock-state basis and
solving the Schrödinger equation (see also [22]). Figure 1(a)
shows the population dynamics of the signal and idler modes
for different initial atom numbers N0 and the quadratic Zeeman
term tuned to the phase-matching condition q = gN0. Setting
q = 0 eliminates the Zeeman shift and we observe (gray solid
line) significantly slowed dynamics due to phase mismatch.
For reference, we also mark the experimental measurement
time of Ref. [8], τ ′ = 0.0073, corresponding to the reported
value of the squeezing parameter r ≡ N0τ

′ � 2 [21], evaluated
for N0 = 275.

We next analyze the case of an initial thermal seed in
the signal and idler modes, with an equal average number
of atoms n̄th in both modes. To simulate the dynamics in
this case, we use the truncated Wigner method (Ref. [23]
gives simple prescriptions on how to model various initial
states in the Wigner representation). Figure 1(b) illustrates
that the presence of the thermal seed accelerates population
growth, however, it does not significantly effect the maximal
depletion of the BEC. The numerical results in Fig. 1(b)

τ

n
±

1
(τ

)/
N

0

τ

N0 = 175

nth = 1
nth = 0

N0 = 175
N0 = 200

N0 = 150
nth = 2

FIG. 1. (a) Fractional population n±1(τ )/N0 of the signal and
idler modes [where n±1(τ )≡〈â†

±1(τ )â±1(τ )〉] as a function of the
dimensionless time τ for the vacuum initial state and different initial
number of atoms in the pump mode N0. The quadratic Zeeman term
is phase matched to q = gN0 in all cases, except for the gray solid
line, which is shown for comparison for q =0 and N0 =175. The
vertical dotted line indicates the measurement time τ ′ =0.0073 used
in Ref. [8]. (b) Same as in (a), but with thermally seeded populations
in the signal and idler modes (assumed to be equal to each other) for
N0 =175. The gray dashed lines show the analytic predictions in the
undepleted pump approximation.
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are compared with the analytic predictions of the simple
model of parametric down-conversion in the undepleted pump
approximation n±1(τ ) = sinh2(N0τ )[1 + 2n̄th] + n̄th (see the
Appendix for full analytic solutions). As expected, we find
good agreement between the numerical and analytic results in
the short-time limit. We also conclude that as far as the mode
populations are concerned, the experimental measurement
time τ ′ = 0.0073 is not too far from the regime of validity
of the simple analytic model, at least for n̄th � 2. This
conclusion, however, cannot necessarily be carried through to
other observables such as the entanglement measures analyzed
below.

B. Einstein-Podolsky-Rosen entanglement

Central to this paper is an investigation into the possible
demonstration of the EPR paradox as outlined in Ref. [8]. In the
context of continuous-variable entanglement, this is equivalent
to the seeming violation of the Heisenberg uncertainty relation
for inferred quadrature variances [6,11]. In the normalized
form this EPR-entanglement criterion can be written as

ϒj = 	2
infX̂j	

2
inf Ŷj

(1 − 〈â†
j âj 〉/〈b̂†j b̂j 〉)2

< 1, (6)

where the optimal1 inferred quadrature variance for X̂j (and
similarly for Ŷj ) is given by [6]

	2
infX̂j = 〈(	X̂j )2〉 − 〈	X̂i	X̂j 〉2

〈(	X̂i)2〉 , (7)

with 	X̂j ≡ X̂j − 〈X̂j 〉 and i,j = ±1. The generalized
quadrature operators are defined as X̂j (θ ) = (â†

j b̂j e
iθ +

b̂
†
j âj e

−iθ )/〈b̂†j b̂j 〉1/2 [11], where the operator b̂j represents the
local oscillator field required for homodyne detection of the
quadratures and we define X̂j = X̂j (π/4) and Ŷj =X̂j (3π/2).
Choosing this pair of canonically conjugate quadratures max-
imizes the correlation (anticorrelation) between them, defined
as C = 〈X̂i(θ )X̂j (θ )〉/[〈X̂i(θ )2〉〈X̂j (θ )2〉]1/2, thus minimizing
the inferred quadrature variance.

Our choice of generalized quadrature operators [11] varies
from the standard form X̂j (θ ) = âj e

−iθ + â
†
j e

iθ [21], as it
does not assume a perfectly coherent, strong local oscillator.
Instead, it takes into account the fact that the local oscillator
is derived, just before the measurement time, from the
partially depleted and already incoherent pump mode [8].
When measuring these quadratures the pump mode is split
into two local oscillators by an atomic beam splitter [11] (for
instance, a rf π/2 pulse), in which the output is given by b̂±1 =
(â0 ± âvac)/

√
2, where âvac represents the vacuum entering the

empty port of the beam splitter. This is slightly different from

1The form of the inferred quadrature variance in Eq. (7) varies
slightly from that used in Ref. [8], where the inferred quadrature
variances are equivalent to measurements of 	2

infX̂2 = 	2(X̂1 − X̂2)
and 	2

inf Ŷ2 = 	2(Ŷ1 + Ŷ2) [11]. This choice is different in that it
does not give the optimal violation of Eq. (6) [6]; however, in the
parameter regime we consider the difference between the choices of
inferred quadratures is not qualitatively significant.
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FIG. 2. (a) Evolution of the EPR entanglement parameter ϒ for
the same situation as in Fig. 1(a). The EPR criterion corresponds
to ϒ < 1 (dashed horizontal line). The inset shows the evolution of
the optimal phase angle of the local oscillator θ0(τ ) for each N0.
(b) Evolution of ϒ for thermally seeded signal and idler modes
and N0 =175. The experimental measurement time τ ′ =0.0073 is
shown in (a) and (b) as a vertical dotted line. The respective gray
lines are the analytic predictions from the undepleted pump model.
(c) Time-optimized EPR parameter ϒmin as a function of n̄th for
different N0. The respective gray lines are the analytic predictions
from the undepleted pump model. The gray line with squares shows
ϒmin for N0 =175, but assuming that the seeds are in a coherent state
(sharing initially the same phase as the pump mode) with average
populations of |α±1(0)|2 = n̄th. (d) Same as in (c), but as a function
of N0 for three different thermal seeds n̄th.

the method used in Ref. [8], where an atomic three-port beam
splitter is used to measure relevant quadratures.

Phase accrued due to Ĥel + ĤZ leads to a drifting in the
phase relation between the local oscillator and the signal
and idler modes. This means that our original quadrature
choice of X̂j (π/4) and X̂j (3π/2) may not measure the optimal
violation of the EPR criterion. By minimizing this criterion as
a function of phase the optimal choice of quadratures becomes
X̂j (θ0(τ )) and X̂j (θ0(τ ) + π/2), where θ0(τ ) is the optimal
local oscillator phase relative to the signal and idler modes.

063635-3



R. J. LEWIS-SWAN AND K. V. KHERUNTSYAN PHYSICAL REVIEW A 87, 063635 (2013)

0
0

25

50

−π/2 π/2

n̄th = 1

n̄th = 0
|α±1(0)|2 = 1

+

+

-

-

Δ
X

2 ±
(θ

)

θ − θ0

(a)

0 1 2 3 4
0

2

4

n̄th

Δ
2 X

−
(θ

0)

(b) N0 = 200
N0 = 175
N0 = 150

Coherent seed,
N0 = 175

100 150 200 250 300
0

1

2

N0

Δ
2 X

−
(θ

0)

(c)

n̄th = 1
n̄th = 0.5
n̄th = 0

FIG. 3. (a) Two-mode quadrature variances 	2X̂±(θ ) at τ ′ =
0.0073 as functions of the local oscillator phase angle θ − θ0 for
vacuum (solid lines) and thermally seeded (dashed lines) signal and
idler modes; N0 = 175 in both cases. We also include a calculation
of 	2X̂−(θ ) for a comparable coherent seed (dot-dashed line)
|α±1(0)|2 = 1, which is almost indistinguishable from the vacuum
case. (b) Time-optimized minimum of 	2X̂−(θ0) as a function of
n̄th for different N0. The gray line with squares shows 	2X̂−(θ0) for
N0 = 175, but assuming the seeds are in a coherent state with average
populations of |α±1(0)|2 = n̄th. (c) Same as in (b), but as a function
of N0 for different n̄th.

In Fig. 2(a) we show the results of calculation of the phase-
optimized EPR-entanglement parameter ϒ (with ϒ−1 = ϒ1 ≡
ϒ due to the symmetry of the signal and idler modes) for the
signal and idler modes initially in a vacuum state. We see that
strong EPR entanglement (ϒ < 1) can be achieved for a large
experimental time frame, up to τ � 0.01; more specifically,
we predict suppression of the optimal EPR entanglement of
at least 90% below unity for all relevant total atom numbers
(ranging from 150 to 200) at τ ′ = 0.0073. Unlike the simple
undepleted pump model, which predicts ϒ = cosh−2(2N0τ )
and hence indefinite suppression of the EPR criterion [21],
EPR entanglement in the full model is eventually lost due to
a combination of back-conversion (|+1〉 + |−1〉 → |0〉 + |0〉)
and the loss of coherence in the pump mode.

Our results predict that a strong EPR violation should have
been observed if the signal and idler modes were indeed
generated from an initial vacuum state. In light of this and
the large error margin of the experimental result in Ref. [8],
which thus cannot conclusively demonstrate the existence
or nonexistence of EPR entanglement, we now discuss the
possible presence of stray or thermally excited atoms in the
signal and idler modes and the effects such seeding can
have on entanglement and particularly the EPR criterion. The
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FIG. 4. (a) Time-optimized inseparability criterion for the
quadrature entangled state, quantified via

∑
	2

2/
∑

	2
1 < 1, as a

function of n̄th for different N0. The gray line with squares shows∑
	2

2/
∑

	2
1 for N0 = 175, but assuming the seeds are in a coherent

state with average populations |α±1(0)|2 = n̄th. (b) Same as in (a), but
as a function of N0 for different n̄th.

results of calculation of the EPR-entanglement parameter ϒ

for an initial thermal seed of n̄th in both modes are shown
in Figs. 2(b)–2(d). We find that the introduction of a thermal
seed reduces the strong correlation between the signal and idler
modes, leading to an eventual loss of EPR entanglement. For an
initial number of atoms in the pump mode ranging between 150
and 200, EPR entanglement is lost already for n̄th � 1. Direct
experimental detection of stray atoms at such a low population
level is beyond the current resolution of absorption imaging
techniques [8]. More generally, our numerical results show
that the maximum n̄th that can be tolerated while preserving the
EPR entanglement scales as (n̄th)max ∼ 0.06N

11/20
0 in the range

of 100 � N0 � 400 (see the Appendix for further discussion).
For comparison, seeding the signal and idler modes with a
coherent state [13] of similar population does not have such a
dramatic effect on EPR entanglement [see the gray line with
squares in Fig. 2(c)].

C. Quadrature squeezing and inseparability

To further highlight the high sensitivity of EPR entan-
glement to initial thermal noise we contrast it with two
other weaker measures of the nonclassicality of the state:
two-mode quadrature squeezing and intermode entanglement
in the sense of inseparability, which were the main focus of
Ref. [8]. The two-mode quadrature variances are defined as
X̂±(θ ) = X̂1(θ ) ± X̂−1(θ ), with 	2X̂−(θ ) < 2 corresponding
to two-mode squeezing [21], i.e., suppression of fluctuations
below the level dictated by a minimum-uncertainty state. We
plot the results of our numerical calculations of quadrature
variances in Fig. 3(a). From these results we observe that the
measurements of Ref. [8] do not agree with the amplitude of
the oscillation that we find for an initial vacuum state (solid
lines) or a small coherent seed (dot-dashed line). Rather they
suggest the presence of a small thermal seed of n̄th � 1 (dashed
lines), although for definitive differentiation of initial thermal
or coherent populations further experimental measurements
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with reduced error margins are required. Further, calculation
of the minimum of 	2X̂− [Figs. 3(b) and 3(c)] highlights that
two-mode squeezing is preserved for thermal seed populations
up to n̄th � 1.7, which is consistent with our interpretation of
the measurements reported in Ref. [8].

Next we define the sum of single-mode quadrature vari-
ances as

∑
	2

1 = 2(	2X̂1 + 	2Ŷ1) and the sum of two-mode
quadrature variances

∑
	2

2 = 	2X̂− + 	2Ŷ+. [Following the
treatment of Ref. [8], we calculate the single-mode quadrature
variances with the standard definition of quadratures X̂j (θ ) =
âj e

−iθ + â
†
j e

iθ .] Inseparability of the produced mF = ±1
pair-entangled state is equivalent to

∑
	2

2/
∑

	2
1 < 1 [24].

Figures 4(a) and 4(b) demonstrate that this measure of entan-
glement is far less sensitive to the presence of a thermal seed
in comparison to the stronger criterion of EPR entanglement.
Also, unlike the EPR criterion, this inseparability measure does
not significantly differentiate between coherent and thermal
seeding.

IV. SUMMARY

In conclusion, we have demonstrated that for an initial
vacuum state in the signal and idler modes a strong suppression
of the EPR criterion can be achieved in the parameter regime
of Ref. [8], most importantly including the experimental
measurement time of τ ′ = 0.0073. However, we also establish
that the strength of EPR entanglement depends crucially on
the nature of the initial spin fluctuations. Specifically, we
predict that for a pump mode of initially 150–200 atoms, a
thermal initial seed of n̄th � 1 is sufficient to rule out EPR
entanglement. Weaker measures of entanglement, such as
inseparability, are still possible to observe as these are far
more robust to thermal noise. This implies that spin-changing
collisions may still be a good source of entanglement even
in the presence of large thermal effects, even though we
may not be able to carry through the EPR arguments that
confront the completeness of quantum mechanics and advocate
for local hidden-variable theories. Importantly, our results
suggest that the measurement of this EPR criterion can
serve as a sensitive probe of the initial state, which triggers
the pair-production process, beyond measures employed in
Ref. [13]. This understanding of the sensitivity of EPR
entanglement to initial thermal noise will hopefully lead to
refining of spin-mixing experiments towards demonstration

of the EPR paradox with massive particles. We expect our
findings to be also relevant to related proposals based on
molecular dissociation [25], condensate collisions [26–29],
and optomechanical systems [30].
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APPENDIX: UNDEPLETED PUMP APPROXIMATION

To invoke the undepleted pump approximation, we assume
that the pump mode is initially in a coherent state with an
amplitude α0(0) = √

N0 (which we choose to be real without
loss of generality) and that it does not change with time. By
additionally choosing the quadratic Zeeman effect to be phase
matched (q = gN0), we can reduce the model Hamiltonian
to that of optical parametric down-conversion [21] Ĥ =
h̄χ (â†

1â
†
−1 + H.c.), in which χ = gN0. The Heisenberg equa-

tions of motion following from this are dâ±1/dτ = −iN0â
†
∓1,

where τ = gt is a dimensionless time. Solutions to these
equations are given by

â±1(τ ) = cosh(N0τ )â±1(0) − i sinh(N0τ )â†
∓1(0), (A1)

which are physically valid in the short-time limit, generally
corresponding to less than 10% depletion of the pump mode
occupation.

Considering specific initial states for the signal and idler
modes, these solutions can be used to calculate expectation
values of various quantum mechanical operators and observ-
ables. For example, for a thermal initial state with an equal
population in both modes, 〈â†

1(0)â1(0)〉 = 〈â†
−1(0)â−1(0)〉 ≡

n̄th, the subsequent evolution of the mode populations is given
by

〈â†
±1(τ )â±1(τ )〉 = sinh2(N0τ )[1 + 2n̄th] + n̄th, (A2)

whereas the anomalous moments evolve according to

〈â±1(τ )â∓(τ )〉 = −i sinh(N0τ ) cosh(N0τ )[1 + 2n̄th]. (A3)

Similarly, the EPR-entanglement parameter is found to be
given by

ϒ ∼=
[

(1 + 2n̄th)2 + 1
N0

[(1 + 2n̄th) cosh(2N0τ ) − 1][2(1 + 2n̄th) cosh(2N0τ ) − 1]

(1 + 2n̄th) cosh(2N0τ ) − 1
N0

[(1 + 2n̄th) cosh(2N0τ ) − 1]2

]2

, (A4)

where we have assumed N0 � 1. The minimum value of this quantity (with respect to time τ ) gives the maximal violation of
the EPR criterion

ϒmin
∼=

[ √
2N0√

1
2N0 − (1 + 2n̄th) − 1

2N0
{(1 + 2n̄th)3 − [(1 + 2n̄th)2 + 1]

√
2N0}

− 2

]2

, (A5)

which is achieved at the optimal time

τmin = 1

2N0
arccosh

[
−1

2
(1 + 2n̄th) + 1

2

√
(1+2n̄th)2+2N0

]
. (A6)
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From Eq. (A5) we also determine the maximum allowable
thermal population before EPR entanglement is lost. By
numerical analysis we find a maximum seed of (n̄th)max �
0.05N

2/3
0 in the range 100 � N0 � 400. We find that this

compares reasonably with the results of full numerical sim-
ulations, which predict (n̄th)max � 0.06N

11/20
0 . Furthermore,

we may also calculate the minimum two-mode quadrature
variance

	2X− = 2(1 + 2n̄th)[cosh(2N0τ ) − sinh(2N0τ )] (A7)

and the intermode inseparability parameter (see the main
text)

�	2
2

/
�	2

1 = 1 − tanh(2N0τ ). (A8)

Despite their limited applicability and the quantitative
disagreement with the numerical results, the analytic pre-
dictions of the undepleted pump approximation give useful
insights into the qualitative aspects of different measures of
entanglement. For example, to leading order, Eqs. (A4) and
(A7) predict, respectively, quadratic and linear growth of the
EPR entanglement parameter and two-mode squeezing with
the thermal seed n̄th, whereas the intermode inseparability (A8)
is insensitive to n̄th. The predictions for EPR entanglement
and two-mode squeezing are in qualitative agreement with
the numerical results discussed in the main text, while we
find that weak linear growth with n̄th emerges for intermode
inseparability due to depletion of the pump. These qualitative
predictions highlight the lower tolerance and higher sensitivity
of the EPR entanglement to thermal noise.
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