research

Proposal for demonstrating the Hong-Ou-Mandel effect with matter waves

Abstract

The Hong-Ou-Mandel (HOM) effect is a striking demonstration of destructive quantum interference between pairs of indistinguishable bosons, realised so far only with massless photons. Here we propose an experiment which can realise this effect in the matter-wave regime using pair-correlated atoms produced via a collision of two Bose-Einstein condensates and subjected to two laser induced Bragg pulses. We formulate a novel measurement protocol appropriate for the multimode matter-wave field, which---unlike the typical two-mode optical case---bypasses the need for repeated measurements under different displacement settings of the beam-splitter, thus dramatically reducing the number of experimental runs required to map out the interference visibility. The protocol can be utilised in related matter-wave schemes; here we focus on condensate collisions and by simulating the entire experiment we predict a HOM-dip visibility of ~69%. By being larger than 50%, such a visibility highlights strong quantum correlations between the atoms and paves the way for a possible demonstration of a Bell inequality violation with massive particles in a related Rarity-Tapster setup.Comment: Essentially the same version as v2, except in Nature Communications style; for Supplementary Information see the source fil

    Similar works