13 research outputs found

    Genome Assembly and Population Sequencing Reveal Three Populations and Signatures of Insecticide Resistance of Tuta absoluta in Latin America

    Get PDF
    Tuta absoluta is one of the largest threats to tomato agriculture worldwide. Native to South America, it has rapidly spread throughout Europe, Africa, and Asia over the past two decades. To understand how T. absoluta has been so successful and to improve containment strategies, high-quality genomic resources and an understanding of population history are critical. Here, we describe a highly contiguous annotated genome assembly, as well as a genome-wide population analysis of samples collected across Latin America. The new genome assembly has an L50 of 17 with only 132 contigs. Based on hundreds of thousands of single nucleotide polymorphisms, we detect three major population clusters in Latin America with some evidence of admixture along the Andes Mountain range. Based on coalescent simulations, we find these clusters diverged from each other tens of thousands of generations ago prior to domestication of tomatoes. We further identify several genomic loci with patterns consistent with positive selection and that are related to insecticide resistance, immunity, and metabolism. This data will further future research toward genetic control strategies and inform future containment policies.info:eu-repo/semantics/publishedVersio

    Sequencing of Tuta absoluta genome to develop SNP genotyping assays for species identification

    Get PDF
    Tuta absoluta is one of the most devastating pests of fresh market and processing tomatoes. Native to South America, its detection was confined to that continent until 2006 when it was identified in Spain. It has now spread to almost every continent, threatening countries whose economies rely heavily on tomatoes. This insect causes damage to all developmental stages of its host plant, leading to crop losses as high as 80–100%. Although T. absoluta has yet to be found in the USA and China, which makes up a large portion of the tomato production in the world, computer models project a high likelihood of invasion. To halt the continued spread of T. absoluta and limit economic loss associated with tomato supply chain, it is necessary to develop accurate and efficient methods to identify T. absoluta and strengthen surveillance programs. Current identification of T. absoluta relies on examination of morphology and assessment of host plant damage, which are difficult to differentiate from that of native tomato pests. To address this need, we sequenced the genomes of T. absoluta and two closely related Gelechiidae, Keiferia lycopersicella and Phthorimaea operculella, and developed a bioinformatic pipeline to design a panel of 21-SNP markers for species identification. The accuracy of the SNP panel was validated in a multiplex format using the iPLEX chemistry of Agena MassARRAY system. Finally, the new T. absoluta genomic resources we generated can be leveraged to study T. absoluta biology and develop species-specific management strategies.info:eu-repo/semantics/acceptedVersio

    Population genomics of Drosophila suzukii reveal longitudinal population structure and signals of migrations in and out of the continental United States

    Get PDF
    Drosophila suzukii, or spotted-wing drosophila, is now an established pest in many parts of the world, causing significant damage to numerous fruit crop industries. Native to East Asia, D. suzukii infestations started in the United States (U.S.) a decade ago, occupying a wide range of climates. To better understand invasion ecology of this pest, knowledge of past migration events, population structure, and genetic diversity is needed. In this study, we sequenced whole genomes of 237 individual flies collected across the continental U.S., as well as several sites in Europe, Brazil, and Asia, to identify and analyze hundreds of thousands of genetic markers. We observed strong population structure between Western and Eastern U.S. populations, but no evidence of any population structure between different latitudes within the continental U.S., suggesting there is no broad-scale adaptations occurring in response to differences in winter climates. We detect admixture from Hawaii to the Western U.S. and from the Eastern U.S. to Europe, in agreement with previously identified introduction routes inferred from microsatellite analysis. We also detect potential signals of admixture from the Western U.S. back to Asia, which could have important implications for shipping and quarantine policies for exported agriculture. We anticipate this large genomic dataset will spur future research into the genomic adaptations underlying D. suzukii pest activity and development of novel control methods for this agricultural pes
    corecore