78 research outputs found
Oulipian Messages
The result of Oulipo\u27s manipulations seem devoid of any message. Upon performing, however, what could be called an Oulipo-critique, the folding of an Oulipo product into a body of knowledge quite removed from it, in this case biology and information theory, we find that Oulipo\u27s message is not in the text but in the work one is likely to perform on that text. That work has all the characteristics of a highly redundant and organized interference and consists in establishing contextual and/or intertextual relationships according to preset formal constraints where chance plays almost no role. Oulipo in effect confuses message and information and its message is programmatic, an invitation to write using those formal constraints
A versatile laser-based apparatus for time-resolved ARPES with micro-scale spatial resolution
We present the development of a versatile apparatus for a 6.2 eV laser-based
time and angle-resolved photoemission spectroscopy with micrometer spatial
resolution (time-resolved -ARPES). With a combination of tunable spatial
resolution down to 11 m, high energy resolution (11 meV),
near-transform-limited temporal resolution (280 fs), and tunable 1.55 eV
pump fluence up to 3 mJ/cm, this time-resolved -ARPES system
enables the measurement of ultrafast electron dynamics in exfoliated and
inhomogeneous materials. We demonstrate the performance of our system by
correlating the spectral broadening of the topological surface state of
BiSe with the spatial dimension of the probe pulse, as well as
resolving the spatial inhomogeneity contribution to the observed spectral
broadening. Finally, after in-situ exfoliation, we performed time-resolved
-ARPES on a 30 m few-layer-thick flake of transition metal
dichalcogenide WTe, thus demonstrating the ability to access ultrafast
electron dynamics with momentum resolution on micro-exfoliated and twisted
materials
Recommended from our members
Shotgun metagenomic analysis of microbial communities from the Loxahatchee nature preserve in the Florida Everglades.
BackgroundCurrently, much is unknown about the taxonomic diversity and the mechanisms of methane metabolism in the Florida Everglades ecosystem. The Loxahatchee National Wildlife Refuge is a section of the Florida Everglades that is almost entirely unstudied in regard to taxonomic profiling. This short report analyzes the metagenome of soil samples from this Refuge to investigate the predominant taxa, as well as the abundance of genes involved in environmentally significant metabolic pathways related to methane production (nitrogen fixation and dissimilatory sulfite reduction).MethodsShotgun metagenomic sequencing using the Illumina platform was performed on 17 soil samples from four different sites within the Loxahatchee National Wildlife Refuge, and underwent quality control, assembly, and annotation. The soil from each sample was tested for water content and concentrations of organic carbon and nitrogen.ResultsThe three most common phyla of bacteria for every site were Actinobacteria, Acidobacteria, and Proteobacteria; however, there was variation in relative phylum composition. The most common phylum of Archaea was Euryarchaeota for all sites. Alpha and beta diversity analyses indicated significant congruity in taxonomic diversity in most samples from Sites 1, 3, and 4 and negligible congruity between Site 2 and the other sites. Shotgun metagenomic sequencing revealed the presence of biogeochemical biomarkers of particular interest (e.g., mrcA, nifH, and dsrB) within the samples. The normalized abundances of mcrA, nifH, and dsrB exhibited a positive correlation with nitrogen concentration and water content, and a negative correlation with organic carbon concentration.ConclusionThis Everglades soil metagenomic study allowed examination of wetlands biological processes and showed expected correlations between measured organic constituents and prokaryotic gene frequency. Additionally, the taxonomic profile generated gives a basis for the diversity of prokaryotic microbial life throughout the Everglades
Unveiling the underlying interactions in Ta2NiSe5 from photo-induced lifetime change
We present a generic procedure for quantifying the interplay of electronic
and lattice degrees of freedom in photo-doped insulators through a comparative
analysis of theoretical many-body simulations and time- and angle-resolved
photoemission spectroscopy (TR-ARPES) of the transient response of the
candidate excitonic insulator Ta2NiSe5. Our analysis demonstrates that the
electron-electron interactions dominate the electron-phonon ones. In
particular, a detailed analysis of the TRARPES spectrum enables a clear
separation of the dominant broadening (electronic lifetime) effects from the
much smaller bandgap renormalization. Theoretical calculations show that the
observed strong spectral broadening arises from the electronic scattering of
the photo-excited particle-hole pairs and cannot be accounted for in a model in
which electron-phonon interactions are dominant. We demonstrate that the
magnitude of the weaker subdominant bandgap renormalization sensitively depends
on the distance from the semiconductor/semimetal transition in the
high-temperature state, which could explain apparent contradictions between
various TR-ARPES experiments. The analysis presented here indicates that
electron-electron interactions play a vital role (although not necessarily the
sole one) in stabilizing the insulating state
Early and Late Direct Costs in a Southern African Antiretroviral Treatment Programme: A Retrospective Cohort Analysis
Gary Maartens and colleagues describe the direct heath care costs and identify the drivers of cost over time in an HIV managed care program in Southern Africa
Serotonin Reduction in Post-acute Sequelae of Viral Infection
Post-acute sequelae of COVID-19 (PASC, Long COVID ) pose a significant global health challenge. The pathophysiology is unknown, and no effective treatments have been found to date. Several hypotheses have been formulated to explain the etiology of PASC, including viral persistence, chronic inflammation, hypercoagulability, and autonomic dysfunction. Here, we propose a mechanism that links all four hypotheses in a single pathway and provides actionable insights for therapeutic interventions. We find that PASC are associated with serotonin reduction. Viral infection and type I interferon-driven inflammation reduce serotonin through three mechanisms: diminished intestinal absorption of the serotonin precursor tryptophan; platelet hyperactivation and thrombocytopenia, which impacts serotonin storage; and enhanced MAO-mediated serotonin turnover. Peripheral serotonin reduction, in turn, impedes the activity of the vagus nerve and thereby impairs hippocampal responses and memory. These findings provide a possible explanation for neurocognitive symptoms associated with viral persistence in Long COVID, which may extend to other post-viral syndromes
Microduplications of 16p11.2 are associated with schizophrenia
Recurrent microdeletions and microduplications of a 600-kb genomic region of chromosome 16p11.2 have been implicated in childhood-onset developmental disorders1,2,3. We report the association of 16p11.2 microduplications with schizophrenia in two large cohorts. The microduplication was detected in 12/1,906 (0.63%) cases and 1/3,971 (0.03%) controls (P = 1.2 × 10−5, OR = 25.8) from the initial cohort, and in 9/2,645 (0.34%) cases and 1/2,420 (0.04%) controls (P = 0.022, OR = 8.3) of the replication cohort. The 16p11.2 microduplication was associated with a 14.5-fold increased risk of schizophrenia (95% CI (3.3, 62)) in the combined sample. A meta-analysis of datasets for multiple psychiatric disorders showed a significant association of the microduplication with schizophrenia (P = 4.8 × 10−7), bipolar disorder (P = 0.017) and autism (P = 1.9 × 10−7). In contrast, the reciprocal microdeletion was associated only with autism and developmental disorders (P = 2.3 × 10−13). Head circumference was larger in patients with the microdeletion than in patients with the microduplication (P = 0.0007)
Ten golden rules for optimal antibiotic use in hospital settings: the WARNING call to action
Antibiotics are recognized widely for their benefits when used appropriately. However, they are often used inappropriately despite the importance of responsible use within good clinical practice. Effective antibiotic treatment is an essential component of universal healthcare, and it is a global responsibility to ensure appropriate use. Currently, pharmaceutical companies have little incentive to develop new antibiotics due to scientific, regulatory, and financial barriers, further emphasizing the importance of appropriate antibiotic use. To address this issue, the Global Alliance for Infections in Surgery established an international multidisciplinary task force of 295 experts from 115 countries with different backgrounds. The task force developed a position statement called WARNING (Worldwide Antimicrobial Resistance National/International Network Group) aimed at raising awareness of antimicrobial resistance and improving antibiotic prescribing practices worldwide. The statement outlined is 10 axioms, or “golden rules,” for the appropriate use of antibiotics that all healthcare workers should consistently adhere in clinical practice
- …