26 research outputs found

    Valuing Energy Options in a One Factor Model Fitted to Forward Prices

    Get PDF
    In this paper we develop a single-factor modeling framework which is consistent with market observable forward prices and volatilities. The model is a special case of the multi-factor model developed in Clewlow and Stickland [1999b] and leads to analytical pricing formula for standard options, caps, floors, collars and swaptions. We also show how American style and exotic energy derivatives can be priced using trinomial trees, which are constructed to be consistent with the forward curve and volatility structure. We demonstrate the application of the trinomial tree to the pricing of a European and American Asian option. The analysis in this paper extends the results in Schwartz [1997] and Amin, et al. [1995].

    Pricing Interest Rate Exotics in Multi-Factor Gaussian Interest Rate Models

    Get PDF
    For many interest rate exotic options, for example options on the slope of the yield curve or American featured options, a one factor assumption for term structure evolution is inappropriate. These options derive their value from changes in the slope or cuvature of the yield curve and hence are more realistically priced with multiple factor models. However, efficient construction of short rate trees becomes computationally intractable as we increase the number of factors and in particular as we move to non-Markovian models. In this paper we describe a general framework for pricing a wide range of interest rate exotic options under a very general family of multi-factor Gaussian interest rate models. Our framework is based on a computationally efficient implementation of Monte Carlo integration utilising analytical approximations as control variates. These techniques extend the analysis of Clewlow, Pang and Strickland [1997] for pricing interest rate caps and swaptions.

    Modelling and Estimating the Forward Price Curve in the Energy Market

    Get PDF
    The stochastic or random nature of commodity prices plays a central role in models for valuing financial contingent claims on commodities. In this paper, by enhancing a multifactor framework which is consistent not only with the market observable forward price curve but also the volatilities and correlations of forward prices, we propose a two factor stochastic volatility model for the evolution of the gas forward curve. The volatility is stochastic due to a hidden Markov Chain that causes it to switch between "on peak" and "off peak" states. Based on the structure functional forms for the volatility, we propose and implement the Markov Chain Monte Carlo (MCMC) method to estimate the parameters of the forward curve model. Applications to simulated data indicate that the proposed algorithm is able to accommodate more general features, such as regime switching and seasonality. Applications to the market gas forward data shows that the MCMC approach provides stable estimates.

    The Evaluation of Multiple Year Gas Sales Agreement with Regime Switching

    Get PDF
    A typical gas sales agreement (GSA) also called a gas swing contract, is an agreement between a supplier and a purchaser for the delivery of variable daily quantities of gas, between specified minimum and maximum daily limits, over a certain number of years at a specified set of contract prices. The main constraint of such an agreement that makes them difficult to value are that in each gas year there is a minimum volume of gas (termed take-or-pay or minimum bill) for which the buyer will be charged at the end of the year (or penalty date), regardless of the actual quantity of gas taken. We propose a framework for pricing such swing contracts for an underlying gas forward price curve that follows a regime-switching process in order to better capture the volatility behaviour in such markets. With the help of a recombing pentanonial tree, we are able to efficiently evaluate the prices of the swing contracts, find optimal daily decisions and optimaly early use of both the make-up bank and the carry forward bank at different regimes. We also show how the change of regime will affect the decisions.gas sales agreement; swing contract; take-or-pay; make-up; carry forward; forward price curve; regime switching volatility; recombing pentanomial tree

    Cellular automata and dynamical systems

    Get PDF
    In this thesis we investigate the theoretical nature of the mathematical structures termed cellular automata. Chapter 1: Reviews the origin and history of cellular automata in order to place the current work into context. Chapter 2: Develops a cellular automata framework which contains the main aspects of cellular automata structure which have appeared in the literature. We present a scheme for specifying the cellular automata rules for this general model and present six examples of cellular automata within the model. Chapter 3: Here we develop a statistical mechanical model of cellular automata behaviour. We consider the relationship between variations within the model and their relationship to dynamical systems. We obtain results on the variance of the state changes, scaling of the cellular automata lattice, the equivalence of noise, spatial mixing of the lattice states and entropy, synchronous and asynchronous cellular automata and the equivalence of the rule probability and the time step of a discrete approximation to a dynamical system. Chapter 4: This contains an empirical comparison of cellular automata within our general framework and the statistical mechanical model. We obtain results on the transition from limit cycle to limit point behaviour as the rule probabilities are decreased. We also discuss failures of the statistical mechanical model due to failure of the assumptions behind it. Chapter 5: Here a practical application of the preceding work to population genetics is presented. We study this in the context of some established population models and show it may be most useful in the field of epidemiology. Further generalisations of the statistical mechanical and cellular automata models allow the modelling of more complex population models and mobile populations of organisms. Chapter 6: Reviews the results obtained in the context of the open questions introduced in Chapter 1. We also consider further questions this work raises and make some general comments on how these may apply to related fields

    The Evaluation of Multiple Year Gas Sales Agreement with Regime Switching

    Get PDF
    A typical gas sales agreement (GSA), also called a gas swing contract, is an agreement between a supplier and a purchaser for the delivery of variable daily quantities of gas, between specified minimum and maximum daily limits, over a certain number of years at a specified set of contract prices. The main constraint of such an agreement that makes them difficult to value is that in each gas year there is a minimum volume of gas (termed take-or-pay or minimum bill) for which the buyer will be charged at the end of the year (or penalty date), regardless of the actual quantity of gas taken. We propose a framework for pricing such swing contracts for an underlying gas forward price curve that follows a regime-switching process in order to better capture the volatility behaviour in such markets. With the help of a recombining pentanomial tree, we are able to efficiently evaluate the prices of the swing contracts, find optimal daily decisions and optimal yearly use of both the make-up bank and the carry forward bank at different regimes. We also show how the change of regime will affect the decisions
    corecore