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Valuing Energy Optionsin a One Factor Model Fitted to

Forward Prices

L es Clewlow and Chris Strickland

Abstract

In this paper we develop a single-factor modeling framework which is consistent with market
observable forward prices and volatilities. The model isa specia case of the multi-factor
model developed in Clewlow and Strickland [1999b] and leads to analytical pricing formula
for standard options, caps, floors, collars and swaptions. We aso show how American style
and exotic energy derivatives can be priced using trinomial trees, which are constructed to be
consistent with the forward curve and volatility structure. We demonstrate the application of
the trinomial tree to the pricing of a European and American Asian option. The analysisin this
paper extends the resultsin Schwartz [1997] and Amin, et a. [1995].
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Valuing Energy Optionsin a One Factor Model Fitted to

Forward Prices

L es Clewlow and Chris Strickland

1 I ntroduction

In this paper we develop a pricing framework that enables the valuation of general energy
contingent claims. There are currently two streams to the pricing literature. The first starts
from a stochastic representation of the energy spot asset and other key variables, such asthe
convenience yield on the asset and interest rates (see for example Gibson and Schwartz
[1990], Schwartz [1997], and Hilliard and Reis[1998]), and derives the prices of energy
contingent claims consistent with the spot process. However, one of the problems of
implementing these modelsis that often the state variables are unobservable - even the spot
priceis hard to obtain, with the problems exasperated if the convenience yield has to be jointly
estimated. The second stream of the literature models the evolution of the forward or futures
curvel. Forward or futures contracts are widely traded on many exchanges with prices easily
observed - often the nearest maturity futures price is used as a proxy for the spot price with
longer dated contracts used to imply the convenience yield. The framework of this paper
resides in this second stream, simultaneously modeling the evolution of the entire forward
curve conditional on the initially observed forward curve. Assuch it allows a unified approach

to the pricing and risk management of a portfolio of energy derivative positions. Our

1 When interest rates are deterministic, as we assume in this paper, futures prices are equa to forward
prices and so al our results for forward prices also apply to futures prices. The model can be
extended to the case of stochastic interest rates using the results of Amin and Jarrow [1992].
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framework is therefore closer to that of Cortazar and Schwartz [1994], and Amin, et a

[1995], although, as we show in this paper, the two approaches are related.

We introduce our model, which is a specia case of the multi-factor model in Clewlow and
Strickland [1999Db], in section 2. The model can be seen as an extension of the first model in
Schwartz [1997], in the same way that the Heath, Jarrow, and Morton [1992] framework can
be viewed as an extension of, say, the Vasicek [1977] model. The volatility structure of
forward prices is the same, and reflects the mean reverting nature of energy prices, but the
initial forward curve can be whatever the market dictates — unlike the Schwartz model, where
the curve is endogenously determined. In section 3 we derive anaytical pricing formulae for
European options on the spot asset, options on forward contracts, caps, floors, collars, and
swaptions. Section 4 presents our methodology for building recombining trinomial trees for
the spot price process consistent with the forward curve. In section 5 we show how European
and American style path dependent energy options can be priced using the tree with Asian
options used as an example and with market data for crude oil and gas. The analysis of this
paper significantly extends the analysis of both the Schwartz paper, which only looks at pricing
futures contracts, and the paper of Amin, et a. (1995) which briefly outline how to price

American options only when the term structure of futures prices has aflat volatility structure.

2 The Model

The starting point for our analysisis the stochastic evolution of the energy forward curve,
F(t,T). Inarisk-neutral world investors price all claims as the expected future value
discounted at the risklessrate. Since forward contracts do not require any initial investment,
in arisk neutral world, the expected change in the forward price must be zero. Also, in order
to obtain a Markovian spot price process the volatilities of forward prices must have a
negative exponential form2. These observations lead to the following stochastic differential

eguation (SDE) for the forward price curve;

2 See Carverhill [1992] for the proof of thisin the context of the HIM framework.
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dF (L T) _

-a(T-t)
FLT) se dz(t) (2.1)

Thisisamore general version of the 1 factor version looked at by Schwartz [1997]. In that
paper he proposes a process for the spot energy price and derives the forward price curve and
the volatility curve to have particular forms. The model in equation (2.1) has two volatility
parameters; s determines the level of spot and forward price return volatility, whilst a
determines the rate at which the volatility of increasing maturity forward prices decline and is
also the speed of mean reversion of the spot price. These parameters can be estimated directly
from the prices of options on the spot price of energy or forward contracts using the resultsin
section 3 of this paper or, alternatively, by best fitting to historical volatilities of forward prices

(an approach we use in section 5).

Any specification of the whole forward price dynamics implies a process for the spot price.
For the specification in equation (2.1) the implied spot price process is shown in Appendix A

to be;

ds(t) _é1InF(0t) _ S0 )l
SR +a(inF(0,)- InS(t))+ 4 (- e )Hdt+sdz(t) 2.2)

The single factor model for the spot asset in Schwartz [1997] has the following defining SDE;

ds) _

S0 a[m- InS|dt +sdz(t) (2.3)

Therefore, equation (2.2) attains consistency with the initial forward curve F(0,T) by making
the long term risk adjusted drift, m the following function of time;

_TInF(0,t) ?
m(t)——ﬂt

+In F(O,t)+ST(1- e>) (2.4)

We show in Appendix B that the forward curve at date t is given by;
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ae S(t) Qap[-a(T-t)] expg_ ie—aT (ez.at ) 1)(e-aT _ et )u (2.5)

F(S().t,T) = F(O,T)gmEj S a
) e

oOC

Thus, the forward curve at any future time is simply a function of the spot price at that time,
theinitial forward curve and the volatility function parameters. This result is computationally
extremely useful, as it means that when pricing derivatives using trees the payoff of the
derivatives can be evaluated analytically. It aso allows usto obtain an analytical formulafor

the price of European swaptionsin section 3.4.

3 Pricing European Options

In this section we discuss the pricing of European options on both the spot energy price and
on forward contracts. Related results for standard European options have previously
appeared in Amin and Jarrow [1991,1992] and Amin, et al. [1995].

3.1 Optionson the Spot

From the standard risk-neutral pricing results (Cox and Ross [1976], Harrison and Pliska
[1981]) the price of any contingent claim on the spot price, C(t, S(t); Q), is given by the

expectation of the discounted payoff under the risk neutral measure3

C(t,S(t); Q) = E,[P(t, T)C(T,S(T); Q)] (3.1)

e’ 0
where P(t,T) = expg- g (u)duz and Q isavector of constant parameters. Therefore for a
t 1]

standard European call option c(t, S(t); K, T) with strike price K and maturity date T on the
asset §.) we have

c(t, S(t); K, T)=E,[P(t, T) max(0, S(T)- K)] (3.2)

3 We make the standard assumptions regarding the filtration (see for example Amin and Jarrow
[1992)).
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Equation (2.1) can be integrated to give

— € 11 52 sy o a-u) u
F(t,T)=F(,T)expa = e du+gse dz(u) 3.3
tT)=FONepg (5 a2 O (33)
The process for the spot can be obtained by setting T = t;
S{t) = E(t.t) = F(0,) exps = s 2 2 du +dse* W aiz(u)? (3.4)
’ VePg o P @ o
From this we can see that the natural logarithm of the spot price is normally distributed,;
InS(T) ~ N;nF(O T)- 18szemmugy s 2e =m0 gyY
gnFeD- 50 Q i
(3.5

- Ngn F(0,T)- %[1 e‘“],;fz[l- e'“]%

Since interest rates are deterministic and In S(T) is normally distributed we can use the results

of Black and Scholes [1973] to obtain the following analytical formulafor a standard

European call option

o(t, S(t): K, T)=P(t, T)[F (t, T)N(h) - KN(h- v/w)] (3.6)

where

IngFi(t’T)g}w )
h=_¢ K g 2 , W:S—[l- e-Za(T-t)],
2a

Jw

A specia case of equation (2.1) iswhere s (t,T) =s . Thisistherestriction of Amin, eta. In

thiscase w=s ?(T - t).

The formula for standard European put options on the spot can be easily obtained by put-call

parity.
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3.2 Optionson Forwards and Futures

Many optionsin the energy markets are on forward or futures contracts. In this section we
derive the price at time t of a European call option with strike price K that matures at time T
on aforward contract that matures at time s. Options are again priced using the standard

methods. At datet the European call has the price

c(t,F(t,s);K,T,s)=E,[P(t, T) max(0, F (T,5)- K)] (3.7)

Using the methodology of section 3.1 it is straightforward to show that the solution is

c(t,F(t,s);K,T,s)=P(t,T)[F(t,s)N(h) - KN(h- \/v_v)] (3.8)
where
InaEF(t’S)9+}
h=_€ K g 2
Jw

w? is now given by theintegral of the forward price return variance over the life of the option;

WA (t,T,s)
(3.9)

.

(‘Ds Zgr2alsigy
2

2a

S B . B _
_(e 2a(sT) _ g 2als t))

This extends the results in Schwartz [1997] to pricing European options. Note that the results

of section 3.1 are actually a special case of the resultsin this section withs=T.

3.3 Caps, Floorsand Collars

Energy price caps, floors and collars are popular instruments for energy risk management. An
energy price cap limits the floating price of energy the holder will pay on a predetermined set
of dates T+iDT; i=1,...,N to afixed cap level K. A cap istherefore a portfolio of standard

European call options with its price given by
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N
Cap(t;K,T,N,DT)=8 c(t, F(t, T +iDT);K.T +iDT,T +iDT) (3.10)

i=1

Conversaly, an energy price floor limits the minimum price the holder will pay and is therefore
aportfolio of standard European put options. A collar is simply a portfolio of along position

in acap and a short position in afloor.
3.4 Optionson Swaps

We define the time t value of an energy swaption, with maturity date T, to swap a series of

floating spot price payments on dates T+iDT for afixed strike price K to be
é 211 NV«
Swpn(t; K,T,s,N,DT)=P(t,T)E, émaxg i—a F(T,T+iDT)y- K3y (3.11)
8 &N b

We show in Appendix C that the value of the swaption defined in equation (3.11) is given by

N

Savpn(t; K, T, s, N,DT):%& c(t,F(t, T +iDT);K,,T,T +iDT) (3.12)
i=1

where K, = F(S*, T, T +iDT), i =1...,N and F(S*,T,s) isthe forward price at time T for

maturity s when the spot price at time T isS* and is given by the solution to;

N
ié F(S,T,T+iDT) =K (3.13)

4 Building Trinomial Treesfor the Spot Process

In this section we propose a general, robust and efficient procedure involving the use of
trinomial trees for modelling the spot process (2.2) so that it is consistent with initial market
data. The procedureis similar to constructing trinomial trees for the short rate, as outlined by
Hull and White [1994a, 1994b], and described in detail in Clewlow and Strickland [1998].
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These trees can then be used for pricing American style and path dependent options.

American option valuation requires evauation of the following expression

)= _Max _E Soxp(- Or(u)du)g@)y (4.2)
q1 Y[L.T]

where g(q) isthe payoff of the option when it is exercised at date q and Y [t, T] isthe class of

al early exercise strategies (stopping times) in [t,T]. The early exercise strategy, and hence

the option price, can be easily determined from the tree for the spot energy price.

Amin et a [1995] show how to derive a binomial tree to be consistent with the implied spot
process when the volatilities of the forward prices are constant. This section extends their

analysis to the mean reverting model of section 1 and to trinomial trees.
4.1 The TreeBuilding Procedure

The spot price process (2.2) can be written in terms of its natural log, x(t) =In(S(t)) , after an
application of 1to’s lemma as follows,

dx(t) = L”;(O Y ra(inFOY)- x(t))+%(1- e 2)- %s * ot +sz(0) (4.2)
u

which we write as

dx(t) =[q(t) - ax(t)]dt +sdz(t) 4.3)
InF(O,t 2 o) 150
where q(t) = ? n .”( ) aln F(O,t)+57(1- e ) ES %

The tree building procedure consists of two stages. First, apreliminary tree is built for x
assuming that q(t)=0 " t and theinitial value of x iszero. Theresulting ‘simplified’ process

for this new variable, X ,is given by

dx(t) =-aX(t)dt +sdz(t) (4.9
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The time values represented in the tree are equally spaced and have the form ti=iDt wherei isa
non-negative integer and Dt isthetime step. Thelevelsof X (and consequently x) are equaly
spaced and have the form X, ; =jDx where Dx is the space step®. Any node in the tree can

therefore be referenced by a pair of integers, that is the node at the ith time step and jth level
werefer to asnode (i,j). Thetrinomia tree technique is basically an explicit finite difference
scheme and from stability and convergence considerations, a reasonable choice for the

relationship between the space step and the time step is given by®:

Dx =s /3Dt (4.5)

The trinomial branching process and the associated probabilities are chosen to be consistent
with the drift and volatility of the process (4.3). The three nodes which can be reached by the
branches emanating from node (i,j) are (i+1, k-1), (i+1, K), and (i+1, k+1) where k is chosen
so that the value of X reached by the middle branch is as close as possible to the expected

vaueof X attimet,, . Theexpectedvalueof X ; is X ; - ax ;Dt.

Let p,;;, Pmi;»andp,;; definethe probabilities associated with the lower, middie, and upper

branches emanating from node (i,j) respectively. We show in Appendix C that the
probabilities are given by:

16s *Dt+a’x’;Dt? ., ax Dt _ u

=4 U (k- )2 1 2(k- ) - (K- )G

Pui.j 23 O (k- ) Dx (1L- 2(k- J))- ( J)a
LSRR e o k- DY 49)

Pa,i, _28 D J Dx J J a .

Pmij =1- Puij - Pay,j

The procedure described so far applies to the process X with g(t) =0 and X =0.

4 The methodology generalises in a straightforward way to non-constant time and space steps (see
Clewlow and Strickland [1998], Chapter 5.

5 See Hull and White [1993].
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The second stage in the tree building procedure consists of displacing the nodes in the
simplified tree in order to add the proper drift and to be consistent with the observed forward
prices’. We can introduce the correct time varying drift, by displacing the nodes at time iDt

by an amount a;. The a,’s are chosen to ensure that the tree correctly returns the observed

forward price curve. The value of x at node (i, j) in the new tree equals the value of X at the

corresponding node in the original tree plus a; ; the probabilities remain unchanged. The key

to this stage is the use of forward induction and state prices to ensure that the tree returns the

current market forward prices.

Define the state price Q ; asthe value, at time 0, of a security that pays 1 unit of cash if node

(i,j) isreached, and zero otherwise. State prices are the building blocks of all securities; in
particular, the price today C(0) of any European claim with payoff function C(S) at time step i

inthe treeis given by;

C0)=4,Q,C(S,)) (4.7)

where the summation takes place across al of the nodesj at timei. The state prices are

obtained by forward induction?:
Q. =& Q. py; PIDL, (i +1)DY) (4.8)
.

where p;.; isthe probability of moving from node (i, j') to node (i+1, j) and P(iDt, (i +1)Dt)
denotes the price at time iDt of the pure discount bond maturing at time (i +1)Dt. The
summation takes place over al nodesj, at time step i which branch to node (i +1, j). In order

to use the state prices to match the forward curve we use the following special case of
equation (4.7);

6From equation (4.3) we have an analytical solution for q(t). However, we prefer not to use this, asiit
is the continuous time adjustment and would fail to return the observed forward prices in the
tree exactly due to discretisation involved in the tree construction.

7 Equation (4.8) is adiscrete version of the Kolmogorov forward equation.
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P(0,iDt)F (0,iDt) :é’_\ Q.S (4.9)

In Appendix D we show that the adjustment term needed to ensure that the tree correctly

returns the observed forward curve is given explicitly as

_nePOID)F(0,iD)°

3 Qe (4.10)
e

&

e 2

4.2 Examplesof Trinomial TreesFitted to Market Forward Curves

We have fitted the spot rate tree to a number of different market forward curves. Figure 4.1
shows 3 market curves that are representative of; a downward sloping forward price curve
(NYMEX Light, Sweet Crude Oil Futures Contracts, 1 October 1997), an upward sloping
curve (NYMEX Light, Sweet Crude Oil Futures Contracts, 17 December 1997), and an
approximately flat forward curve which exhibits seasonality (NYMEX Henry Hub Natural Gas
Futures Contracts, 17 December, 1997). Two years worth of monthly maturity contracts are

used to construct the curves.

Figure4.1 Market Forward Curves
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Figure 4.2 shows the resulting trees with time steps every two months.

Figure 4.2 Spot Price Trees Fitted to Market Forward Curves
(Downward dloping, Upward Sloping, and Seasonal)
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The volatility parameters used in the tree construction were chosen by best fitting, in aleast

squares sense, the negative exponential forward price volatility function to sample standard
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deviations of one years worth of historical daily futures returns. The resulting parameters for
the speed of mean reversion and spot price volatility were 0.34 and 0.31 respectively for crude
oil, and 1.42 and 0.69 for the gas data.

Table 4.1 shows the results of pricing a one year at-the-money (forward) option on crude oil.
The tree was constructed to fit the downward sloping forward curve of crude oil on the 1%
October 1997 from Figure 4.1. Pricesfor European and American exercise options on both
the spot and options on a 1.5 year forward contract are determined from the tree for different
numbers of time steps. The volatility parameters used in the tree construction were chosen by
abest fit to sample standard deviations for one year of historical data prior to 1* October
1997. Interest rates are assumed to be 6%.

Table 4.1 Value of European and American Options Calculated From the Tree

Options on Spot Optionson Future
Steps/ Euro Euro Ame  Ame Euro Euro Amer Amer
Y ear Call Put Call Put Call Put Call Put

20 1925 1925 2401 2097 1550 1694 1577 1728
40 1918 1918 2395 2093 1543 1688 1573 1722
60 1914 1914 238 2089 1539 1684 1569 1.719
80 1911 1911 2389 2087 1537 1681 1567 1717
100 1909 1909 238 2086 1535 1679 1565 1715
120 1907 1907 2387 208 1533 1678 1564 1714
140 1906 1906 2383 2084 1532 1677/ 1563 1713
160 1905 1905 2386 2083 1531 1676 1562 1712
180 1904 1904 2384 2082 1530 1675 1561 1711
200 1904 1904 2383 2082 1530 1675 1561 1711
Anayticadl  1.904  1.904 1530 1.675

We aso compare the prices of European options calculated from the tree with the analytical
values calculated via equations (3.6) and (3.7). Table 4.1 illustrates that prices calculated
from the tree converge rapidly to the analytical price. It can also be seen from Table 4.1 that
there is an early exercise premium associated with both options on the spot price and on the
forward price due to the fact that the downward sloping forward curve implies a significant

convenience yield on the spot asset.

The nature of the construction of the tree implies that hedge parameters can be quickly and

easly calculated. If we calculate hedge parameters with respect to some *shift’ in the forward
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curve, then this shift only affects the displacement coefficients - it doesn’t effect the position of

the branches relative to the central branch or the probabilities associated with the branches.

5 Pricing General Path Dependent Optionsin Spot Price Trees

Having constructed trinomial trees for the spot energy process we show in this section how to
price general path dependent options using the techniques developed in Hull and White [1993]
(HW) for aBlack and Scholes [1973] world and extended by Clewlow and Strickland [19994]
(CS) to multi-factor interest rate models.

5.1 Pricing General Path Dependent Contingent Claims

Assume we wish to price agenera path dependent option whose payoff depends on some
function G(F(t,s);0£t£T,t £s) of the path of the forward price curve. The procedure

developed in HW and CS follows a number of steps. Firstly, the user determines the range
(i.e. the minimum and maximum) of the possible values of G(.) which can occur for every
nodeinthetree. Thisisachieved by stepping forward through the tree from the origin to the
maturity date computing, at each node, the minimum and maximum value of G(.) given the
value at the nodes at the previous time step which have branches to the current node and the

forward curve at the current node.

Secondly, we choose an appropriate set of values of G(.) between the minimum and maximum
possible for each node. In choosing this set of values we note that the nodes which lie on the
upper and lower edges of the tree have only one path which reaches them and therefore there
can be only one vaue of G(.). The largest range of values will typically occur in the central
section of the tree. The number of values we consider should in general increase only linearly
with the number of time steps and also decrease linearly from the central nodes of the tree
down to one at the edges of the tree in order to control the computational requirements. Let

n,; bethe number of valueswe store at node (i,j) and G, ; ., k= 1,..., n;; bethe values of

G(.) whereG, ;, istheminimumand G, ; .

1]

isthe maximum. Clewlow and Strickland [1998]

suggest choosing n, ; to be
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n, =1+b(i- abs(j)) (5.1)

so that n; ; will dways be one at the edges of the tree and 1+ bi in the centre of the tree. In

this way we can increase b to increase the accuracy of the approximation by considering more

valuesof G(.). Inchoosing the actual set of n; ; values for each node we should consider the

distributional properties of the function G(.). Thiswill vary depending on the nature of G(.)

and therefore must be considered on a case by case basis.

The third step in the procedure is to set the value of the option at maturity at every node and
for every value of G(.)

Cy.jx = Cltn, Fyy )i 10K (5.2

Finally, we step back through the tree computing discounted expectations and applying the

early exercise condition at every node and for every value of G(.)

Ci,j,k =g R (pu,i,jCi+1,j+l,u + pm,i,jCi+l,j,m + pd,i,jCi+l,j—l,d) (5.3)

where f (i, +1) denotes the one period forward rate from time step i to time step i+1 and

Where c:|+1,j+l,u ! G

i+1,j,m?

C.1j.14 @ethevalues of the option at time step i+1, given the

current Gjx, for upward, middle and downward branches of the spot price. These are
obtained by computing the value of G(.), given the current value, after upward, middle and

downward branches G,,; .1+ Giiyjms Gisgjiva -

Thevaues G,y j.,, G Gi.1j.14 -and therefore also the option values C,, ;.,,, C

i+1,j,m? i+1,j,m?

C.1j.14» Will not in general be stored at the upward, middle and downward nodes and

therefore must be obtained by interpolation. For example using linear interpolation we have

& ik - Ciginn §

- LTk, i+1,j+Lk =

Ci+1,j+1,u _Ci+1,j+l,k| +G : Z(Gi+1,j+l,u - Gi+1,j+1,k|) (5-4)
gGiﬂ,jﬂ,ku - Gi+1,j+l,k| ]
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where k; and k, aresuchthat G, j..x £ Gy jiiy £Giugjuax, @d K, =k +1. That isthetwo
values of G(.) which lie closest to either side of G,,, ;.,, arefound and alinear interpolation
between these is done to obtain an estimate for C,, ;,,,. The value of the path dependent

contingent claim is read from the tree asthe value of C, ,.

5.2 Pricing Asian Optionsin a Trinomial Tree

As a specific example of the generalised methodology outlined in section 5.1 we price
European and American versions of an average price call option, where the average is taken

over the spot energy price on thefixing dates t,, | = 1, ..., L.

Let there be atotal of N time steps from the start of the life of the option until its maturity. In
order to find the range of values of the average at each node we step forward through the tree
fromi=0to i=N. If we have found the range for al nodes up to time step i-1 then for any
node (i,j) the minimum average is determined by the minimum average of the lowest node at
time step i-1 with a branch to the current node and the spot price at the current node. The

minimum average is given by

J

.‘.Gi-l,jl,lmi-l+s' it o=t | fixing dat
I if t, =t, i.eafixing date (55)

|
|
.I.
1Gi1j. otherwise

where m isthe number of fixing dates which have occurred up to time step i and node
(i-1j,) isthelowest node with a branch to node (i,j). Similarly the maximum averageis

determined by the maximum average of the highest node at time step i-1 with a branch to the

current node and the energy spot price at the current node

m if t =t, i.e.afixing date (5.6)
otherwise

eneray single factor 18
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where node (i - 1, j,) isthe highest node with a branch to node (i,j). Now since the

arithmetic average of the spot price is essentially a sum of lognormally distributed pricesit will
also be approximately lognormally distributed. We therefore choose alog-linear set for the

n ; values of the average at each node (i,j) which gives

Gi,j,k = Gi,j,le(k-l)h (5.7)

In(G, ;,)- In(G, ;,)
n;-1 '

where h=

In order to determine the option values of equation (5.4) we first compute what the average

would be, given the current average, after upward, middle and downward branches G, .,

Gi+l,j,m’ Gi+l,j—l,d

].Gijkm+sj+1 . . ..
| ————— if t,, =t i.eafixing date

Gl jora =1 m,, b (5.9)
1Gi i« otherwise
1 Gi kM + Sj . . .
| —————- if t,, =t i.e.afixing date

Gisjm =1 m., oM g (5.9)

141G« otherwise
].Gijkm+sj—1 . . .
| ————— if t,, =t i.eafixing date

Givj-14 =1 m.,, oMy (5.10)
141G« otherwise

5.3 A Numerical Example

In this section we price European and American versions of afixed strike average price call
option on crude oil with 1 year to maturity and where the terminal payoff is determined by the
daily average of the crude oil price during the last month of the life of the option. The
valuation date is the 1% October 1997, the tree is constructed to be consistent with the
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downward forward curve in Figure 4.1, using the same parameters as used for Table 4.1.

Table 5.1 contains the results.

Table 5.1 Convergence of European and American Fixed Strike

Average Rate Call Options

European
Max. Number of Valuesfor Average
Steps/Y ear 4 12 20
12 1.869 1.869 1.869
60 1.877 1.854 1.852
108 1.911 1.858 1.853
168 1.958 1.865 1.856
216 1.998 1.872 1.859
American
12 1.922 1.922 1.922
60 1.969 1.949 1.947
108 2.037 1.986 1.981
168 2113 2.008 2.000
216 2.173 2.022 2.009

Table 5.1 shows the convergence of both the European and American option values as we
increase both the numbers of time steps per year and also the maximum number of averages at
each node (see equation (5.1)). A further increase in either of these dimensions does not

achieve greater accuracy of the option value.

5 Summary and Conclusions

In this paper we have developed a single-factor modeling framework which is consistent with
market observable forward prices and volatilities. We derived analytical formulae for the
forward price curve at afuture date, standard European options on spot and forward prices,
caps, floors, collars and swaptions. We have aso shown how American style and exotic
energy derivatives can be priced using trinomial trees, which are constructed to be consistent
with the forward curve and volatility structure. As an example of the application of the
trinomial tree technique we described the pricing of European and American Asian options
and gave an illustrative example of the convergence properties of the procedure. The anaysis
in this paper extends the results in Schwartz [1997] and Amin, et al. [1995].
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Appendix A : Proof of the Spot Price SDE

From equation (2.1) we have that forward prices satisfy the following SDE;

dF(t,T)
F(t,T)

=s (t,T)dz(t)

Thislognormal specification alows the following solution for the forward price;

F(t,T)=F(0, T)exp8 Qs (u,T)?*du +QS (u, T)dz(u)H
The process for the spot can be obtained by setting T = t;

e

() = F(L1) = FODepg ;és (L) du+Q)s (u,t)dz(u)g
Differentiating we obtain;

ds() e‘ﬂInF(Ot) <
sy & @

fs (u Ny Q'”S CLp Hdt +s (t,t)dz(t)

For the specific single factor model of this paper we have;

s (t,T)=se?™"Y

Ts (t,T) _ - _asea™n
i
Let
as(t) _
0 = y(t)dt +s (t,t)dz(t)
where

eneray single factor
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(A.7)

22



VUYL U Yy WPUUTIO T TG T UsLUL IV UG NUILVVIUVY WU IO S U U

éfinF(O,t) ¢ s (ut) ;. 9s (ut) U
t)=g—— - 1) ———*du+ dz(u), A.8
y(®) 1t Qs (ub) VO Z(U)H (A.8)
Therefore we have;
y(t) = w +as ? é)e‘za“' “du- a é(s e u))dz(u) (A.9)
From (A.3), we have;
InS(t) =InF(0,t) - %és 2g2t-ugy +é)se'a“'“)dz(u) (A.10)
implying
1 ad-u) __ € ) 11 o 2w U
agse dz(u)—agnS(t) InF(O,t)+ZQs e duH (A.11)
Therefore
_TInF(0,1) 2 X _2a(t-u) : 1 5 oaguy U
t =————~+as e du-agdnS(t)- InF(0,t) +—= e duy, (A.12
y(t) o 0 u-adns()- INFOY +gs ug (A12

Now ée‘za“'“)du =%[1- e‘zat]

and so, after rearranging, we obtain;

ds(t) _ é1InF(0t) _ S7( o)l
ST +a(InF(0,t)- InS(t))+ . (- e )Hdt+sdz(t) (A.13)
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Ft.  FOTepg 265 © Tvdutd e T a (B.1)

N Ze-Za(T-u)duzie-ZaT[e-Zat } 1] (B.2)
Q° 2a :
From equation (3.4) we have;
S(t) = F(0.) exp§~ %Q}s 2 200y + st Vdz(u)y (B8:3)

2
Now és 2 a(tu) g :Sg[l- e‘zat] which implies that

Qsea(t u)dZ(U) |ng S((t)t)o S [ ] (B.4)
7]

-aT

Also Qse a-Ydz(u) = Qse aTe?dz(u) = Qse a-Wdz(u), substituting from equation

(B.4) we obtain;

a(T-u) a(T- t), 2e S(t) 0 S u
Ose T dz(u) =TV dn o 0: " aa [1 ]H (B.5)

Substituting into equation (B.1), using equations (B.2) and (B.5), and simplifying we obtain;

ap[ a(m-1)] expé- ie‘aT (ezat ] 1)(e'aT i e-at)
F(O, t)z & 4

e S(t) 0

F(,T)=F(@O T)g (B.6)
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Appendix C : Proof of the Analytical Formula for a Swaption

From equation (3.11) we have;
é xj1) N TRV
Swpn(t; K, T,s,N,DT)=P(t,T)E, émaxgo,.'—a F(T,T +iDT)y- K= (C.1)
& &1NG b i
Let S be given by the solution to the following;
14
va F(S*,T,T+iDT) =K (C2)
i=1
Now let K; be given by;
K, = F(S*,T,T+iDT), i =1,..,N (C.3)

Since the forward price F(S(T),T,s) is monotonically increasing in S(T) (see equation (2.5))

then we have;

N
Swpn(t; K, T,s, N,DT)%& c(t,F(t, T +iDT);K,,T,T +iDT) (C.4)

i=1
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Appendix D : Proof of the Transition Probabilities

Under the simplified processfor X of section 4.1 we have

E[Dx] =-ax, Dt

E[Dx?] =s °Dt + E[Dx]?

NUILVVIUVY WU IO S U U

(D.1)

(D.2)

Recall from section 4.1 that k determines the destination level of X of the middle branch from

node (i,j), therefore equating the first and second moments of Dx in the tree with the values

given by equations (D.1) and (D.2) we obtain;

Py, ((k+1)- J)Dx+ py, (k- j)Dx+py; (k- 1)- j)Dx=-ax Dt (D.3)

pu,i,j((k+1)' j)ZDXZ + pm,i,j(k' j)ZDXZ + pd,i,j((k' 1)' j)ZDXZ =S 2DH'(' axi,th)z (D-4)

Also, we require that the sum of the probabilities should be equal to one;

Puij * Pmij+ Pai; =1 (D.5)
Solving the system of equations (D.3), (D.4) and (D.5) we obtain;
16s *Dt+a’x’;Dt? oax Dt _ u
= —@ & +(k- )% ——@1- 2k- )- (k- )
Puiy =5€ O (k- 1) O @- 2(k- j))- (k- ))a
e [;I
1es *Dt+a *x’, Dt
== +(k - + 1+2(k- j)+(k- D.6
P, = 2@ O (k- )? DX ( (k- 1) +( J)E (D.6)

Pmij =1- Puij - Pay,j
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Appendix E : Proof of the Adjustment Term for a[i]

From equation (4.9) we have

P(O,iDYF(0,iD) =3 QS (E.1)

Expressing the spot price §; interms of X ; we obtain;

P(O,iD)F(0,iD) =84 Q e*
i
— é Q _e(ii,j"’ai) (E2)
]
i
P(0,iDt)F(0,iDt) =e* § Q, €™ (E.3)
i
Rearranging equation (E.3) yields;
& .9
31 = |ng P(OéDtQ) Fe(x‘O’JIDt) : (E4)
g o P
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