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Valuing Energy Options in a One Factor Model Fitted to

Forward Prices

Les Clewlow and Chris Strickland

Abstract

In this paper we develop a single-factor modeling framework which is consistent with market

observable forward prices and volatilities.  The model is a special case of the multi-factor

model developed in Clewlow and Strickland [1999b] and leads to analytical pricing formula

for standard options, caps, floors, collars and swaptions.  We also show how American style

and exotic energy derivatives can be priced using trinomial trees, which are constructed to be

consistent with the forward curve and volatility structure.  We demonstrate the application of

the trinomial tree to the pricing of a European and American Asian option.  The analysis in this

paper extends the results in Schwartz [1997] and Amin, et al.  [1995].
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Valuing Energy Options in a One Factor Model Fitted to

Forward Prices

Les Clewlow and Chris Strickland

1 Introduction

In this paper we develop a pricing framework that enables the valuation of general energy

contingent claims.  There are currently two streams to the pricing literature.  The first starts

from a stochastic representation of the energy spot asset and other key variables, such as the

convenience yield on the asset and interest rates (see for example Gibson and Schwartz

[1990], Schwartz [1997], and Hilliard and Reis [1998]), and derives the prices of energy

contingent claims consistent with the spot process.  However, one of the problems of

implementing these models is that often the state variables are unobservable - even the spot

price is hard to obtain, with the problems exasperated if the convenience yield has to be jointly

estimated.  The second stream of the literature models the evolution of the forward or futures

curve1.  Forward or futures contracts are widely traded on many exchanges with prices easily

observed - often the nearest maturity futures price is used as a proxy for the spot price with

longer dated contracts used to imply the convenience yield.  The framework of this paper

resides in this second stream, simultaneously modeling the evolution of the entire forward

curve conditional on the initially observed forward curve.  As such it allows a unified approach

to the pricing and risk management of a portfolio of energy derivative positions.  Our

                                               

1 When interest rates are deterministic, as we assume in this paper, futures prices are equal to forward
prices and so all our results for forward prices also apply to futures prices.  The model can be
extended to the case of stochastic interest rates using the results of Amin and Jarrow [1992].



Valuing Energy Options in a One Factor Model Clewlow and Strickland

energy_single_factor 4

framework is therefore closer to that of Cortazar and Schwartz [1994], and Amin, et al

[1995], although, as we show in this paper, the two approaches are related.

We introduce our model, which is a special case of the multi-factor model in Clewlow and

Strickland [1999b], in section 2.  The model can be seen as an extension of the first model in

Schwartz [1997], in the same way that the Heath, Jarrow, and Morton [1992] framework can

be viewed as an extension of, say, the Vasicek [1977] model.  The volatility structure of

forward prices is the same, and reflects the mean reverting nature of energy prices, but the

initial forward curve can be whatever the market dictates – unlike the Schwartz model, where

the curve is endogenously determined.  In section 3 we derive analytical pricing formulae for

European options on the spot asset, options on forward contracts, caps, floors, collars, and

swaptions.  Section 4 presents our methodology for building recombining trinomial trees for

the spot price process consistent with the forward curve.  In section 5 we show how European

and American style path dependent energy options can be priced using the tree with Asian

options used as an example and with market data for crude oil and gas.  The analysis of this

paper significantly extends the analysis of both the Schwartz paper, which only looks at pricing

futures contracts, and the paper of Amin, et al.  (1995) which briefly outline how to price

American options only when the term structure of futures prices has a flat volatility structure.

2 The Model

The starting point for our analysis is the stochastic evolution of the energy forward curve,

F(t,T).  In a risk-neutral world investors price all claims as the expected future value

discounted at the riskless rate.  Since forward contracts do not require any initial investment,

in a risk neutral world, the expected change in the forward price must be zero.  Also, in order

to obtain a Markovian spot price process the volatilities of forward prices must have a

negative exponential form2.  These observations lead to the following stochastic differential

equation (SDE) for the forward price curve;

                                               

2 See Carverhill [1992] for the proof of this in the context of the HJM framework.
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This is a more general version of the 1 factor version looked at by Schwartz [1997].  In that

paper he proposes a process for the spot energy price and derives the forward price curve and

the volatility curve to have particular forms.  The model in equation (2.1) has two volatility

parameters; σ determines the level of spot and forward price return volatility, whilst α

determines the rate at which the volatility of increasing maturity forward prices decline and is

also the speed of mean reversion of the spot price.  These parameters can be estimated directly

from the prices of options on the spot price of energy or forward contracts using the results in

section 3 of this paper or, alternatively, by best fitting to historical volatilities of forward prices

(an approach we use in section 5).

Any specification of the whole forward price dynamics implies a process for the spot price.

For the specification in equation (2.1) the implied spot price process is shown in Appendix A

to be;
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The single factor model for the spot asset in Schwartz [1997] has the following defining SDE;
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tS

tdS
σµα +−= (2.3)

Therefore, equation (2.2) attains consistency with the initial forward curve F(0,T) by making

the long term risk adjusted drift, µ, the following function of time;
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We show in Appendix B that the forward curve at date t is given by;
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Thus, the forward curve at any future time is simply a function of the spot price at that time,

the initial forward curve and the volatility function parameters.  This result is computationally

extremely useful, as it means that when pricing derivatives using trees the payoff of the

derivatives can be evaluated analytically.  It also allows us to obtain an analytical formula for

the price of European swaptions in section 3.4.

3 Pricing European Options

In this section we discuss the pricing of European options on both the spot energy price and

on forward contracts.  Related results for standard European options have previously

appeared in Amin and Jarrow [1991,1992] and Amin, et al.  [1995].

3.1 Options on the Spot

From the standard risk-neutral pricing results (Cox and Ross [1976], Harrison and Pliska

[1981]) the price of any contingent claim on the spot price, ));(,( ΘtStC , is given by the

expectation of the discounted payoff under the risk neutral measure3

[ ]));(,(),());(,( Θ=Θ TSTCTtPEtStC t (3.1)

where 







−= ∫

T

t

duurTtP )(exp),(  and Θ  is a vector of constant parameters.  Therefore for a

standard European call option ),);(,( TKtStc with strike price K  and maturity date T on the

asset S(.) we have

[ ]))(,0max(),(),);(,( KTSTtPTKtStc t −Ε= (3.2)

                                               

3 We make the standard assumptions regarding the filtration (see for example Amin and Jarrow
[1992]).
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Equation (2.1) can be integrated to give
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The process for the spot can be obtained by setting T = t;
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From this we can see that the natural logarithm of the spot price is normally distributed;
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Since interest rates are deterministic and )(ln TS  is normally distributed we can use the results

of Black and Scholes [1973] to obtain the following analytical formula for a standard

European call option

)]()(),()[,(),);(,( whKNhNTtFTtPTKtStc −−= (3.6)

where

w

w
K

TtF

h
2

1),(
ln +








=        ,      [ ])(2
2

1
2

tTew −−−= α

α
σ

,

A special case of equation (2.1) is where σσ =( ),Tt .  This is the restriction of Amin, et al.  In

this case )(2 tTw −= σ .

The formula for standard European put options on the spot can be easily obtained by put-call

parity.
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3.2 Options on Forwards and Futures

Many options in the energy markets are on forward or futures contracts.  In this section we

derive the price at time t of a European call option with strike price K that matures at time T

on a forward contract that matures at time s.  Options are again priced using the standard

methods.  At date t the European call has the price

[ ])),(,0max(),(),,);,(,( KsTFTtPsTKstFtc t −Ε= (3.7)

Using the methodology of section 3.1 it is straightforward to show that the solution is

)]()(),()[,(),,);,(,( whKNhNstFTtPsTKstFtc −−= (3.8)
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This extends the results in Schwartz [1997] to pricing European options.  Note that the results

of section 3.1 are actually a special case of the results in this section with s = T.

3.3 Caps, Floors and Collars

Energy price caps, floors and collars are popular instruments for energy risk management.  An

energy price cap limits the floating price of energy the holder will pay on a predetermined set

of dates T+i∆T; i=1,…,N to a fixed cap level K.  A cap is therefore a portfolio of standard

European call options with its price given by
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Conversely, an energy price floor limits the minimum price the holder will pay and is therefore

a portfolio of standard European put options.  A collar is simply a portfolio of a long position

in a cap and a short position in a floor.

3.4 Options on Swaps

We define the time t value of an energy swaption, with maturity date T, to swap a series of

floating spot price payments on dates T+i∆T for a fixed strike price K to be
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We show in Appendix C that the value of the swaption defined in equation (3.11) is given by
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where NiTiTTSFK i ,...,1),,*,( =∆+=  and F(S*,T,s) is the forward price at time T for

maturity s when the spot price at time T is S* and is given by the solution to;

KTiTTSF
N

N

i

=∆+∑
=1

),*,(
1

(3.13)

4 Building Trinomial Trees for the Spot Process

In this section we propose a general, robust and efficient procedure involving the use of

trinomial trees for modelling the spot process (2.2) so that it is consistent with initial market

data.  The procedure is similar to constructing trinomial trees for the short rate, as outlined by

Hull and White [1994a, 1994b], and described in detail in Clewlow and Strickland [1998].
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These trees can then be used for pricing American style and path dependent options.

American option valuation requires evaluation of the following expression
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where )(θg  is the payoff of the option when it is exercised at date θ and Ψ[ , ]t T  is the class of

all early exercise strategies (stopping times) in [t,T].  The early exercise strategy, and hence

the option price, can be easily determined from the tree for the spot energy price.

Amin et al [1995] show how to derive a binomial tree to be consistent with the implied spot

process when the volatilities of the forward prices are constant.  This section extends their

analysis to the mean reverting model of section 1 and to trinomial trees.

4.1 The Tree Building Procedure

The spot price process (2.2) can be written in terms of its natural log, ))(ln()( tStx = , after an
application of Ito’s lemma as follows;
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which we write as
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The tree building procedure consists of two stages.  First, a preliminary tree is built for x

assuming that θ(t)=0 ∀  t and the initial value of x is zero.  The resulting ‘simplified’ process

for this new variable, x ,is given by

)()()( tdzdttxtxd σα +−= (4.4)
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The time values represented in the tree are equally spaced and have the form ti=i∆t where i is a

non-negative integer and ∆t is the time step.  The levels of x  (and consequently x) are equally

spaced and have the form xi j, =j∆x where ∆x is the space step4.  Any node in the tree can

therefore be referenced by a pair of integers, that is the node at the ith time step and jth level

we refer to as node (i,j).  The trinomial tree technique is basically an explicit finite difference

scheme and from stability and convergence considerations, a reasonable choice for the

relationship between the space step and the time step is given by5:

tx ∆=∆ 3σ (4.5)

The trinomial branching process and the associated probabilities are chosen to be consistent

with the drift and volatility of the process (4.3).  The three nodes which can be reached by the

branches emanating from node (i,j) are (i+1, k-1), (i+1, k), and (i+1, k+1) where k is chosen

so that the value of x  reached by the middle branch is as close as possible to the expected

value of x  at time ti+1  .  The expected value of jix ,  is txx jiji ∆− ,, α .

Let pu i j, , , pm i j, , , and pd i j, ,  define the probabilities associated with the lower, middle, and upper

branches emanating from node (i,j) respectively.  We show in Appendix C that the

probabilities are given by:
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jidjiujim ppp ,,,,,, 1 −−=

The procedure described so far applies to the process x  with θ( )t = 0 and x = 0 .

                                               

4 The methodology generalises in a straightforward way to non-constant time and space steps (see
Clewlow and Strickland [1998], Chapter 5.

5 See Hull and White [1993].
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The second stage in the tree building procedure consists of displacing the nodes in the

simplified tree in order to add the proper drift and to be consistent with the observed forward

prices6.  We can introduce the correct time varying drift, by displacing the nodes at time i t∆

by an amount ai .  The ai ’s are chosen to ensure that the tree correctly returns the observed

forward price curve.  The value of x at node (i, j) in the new tree equals the value of x  at the

corresponding node in the original tree plus ai ; the probabilities remain unchanged.  The key

to this stage is the use of forward induction and state prices to ensure that the tree returns the

current market forward prices.

Define the state price Qi j,  as the value, at time 0, of a security that pays 1 unit of cash if node

(i,j) is reached, and zero otherwise.  State prices are the building blocks of all securities; in

particular, the price today C(0) of any European claim with payoff function C(S) at time step i

in the tree is given by;

∑=
j jiji SCQC )()0( ,, (4.7)

where the summation takes place across all of the nodes j at time i.  The state prices are

obtained by forward induction7:

∑ ∆+∆=+
'

,'',,1 ))1(,(
j

jjjiji titiPpQQ (4.8)

where p j j',  is the probability of moving from node (i, j') to node (i+1, j) and ))1(,( titiP ∆+∆

denotes the price at time ti∆  of the pure discount bond maturing at time ti ∆+ )1( .  The

summation takes place over all nodes j, at time step i which branch to node ),1( ji + .  In order

to use the state prices to match the forward curve we use the following special case of

equation (4.7);

                                               

6From equation (4.3) we have an analytical solution for θ(t).  However, we prefer not to use this, as it
is the continuous time adjustment and would fail to return the observed forward prices in the
tree exactly due to discretisation involved in the tree construction.

7 Equation (4.8) is a discrete version of the Kolmogorov forward equation.
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In Appendix D we show that the adjustment term needed to ensure that the tree correctly

returns the observed forward curve is given explicitly as













 ∆∆=
∑ j

x

ji

i jieQ

tiFtiP
a

,

,

),0(),0(
ln (4.10)

4.2 Examples of Trinomial Trees Fitted to Market Forward Curves

We have fitted the spot rate tree to a number of different market forward curves.  Figure 4.1

shows 3 market curves that are representative of; a downward sloping forward price curve

(NYMEX Light, Sweet Crude Oil Futures Contracts, 1 October 1997), an upward sloping

curve (NYMEX Light, Sweet Crude Oil Futures Contracts, 17 December 1997), and an

approximately flat forward curve which exhibits seasonality (NYMEX Henry Hub Natural Gas

Futures Contracts, 17 December, 1997).  Two years worth of monthly maturity contracts are

used to construct the curves.

Figure 4.1 Market Forward Curves
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Figure 4.2 shows the resulting trees with time steps every two months.

Figure 4.2 Spot Price Trees Fitted to Market Forward Curves

(Downward sloping, Upward Sloping, and Seasonal)
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The volatility parameters used in the tree construction were chosen by best fitting, in a least

squares sense, the negative exponential forward price volatility function to sample standard
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deviations of one years worth of historical daily futures returns.  The resulting parameters for

the speed of mean reversion and spot price volatility were 0.34 and 0.31 respectively for crude

oil, and 1.42 and 0.69 for the gas data.

Table 4.1 shows the results of pricing a one year at-the-money (forward) option on crude oil.

The tree was constructed to fit the downward sloping forward curve of crude oil on the 1st

October 1997 from Figure 4.1.  Prices for European and American exercise options on both

the spot and options on a 1.5 year forward contract are determined from the tree for different

numbers of time steps.  The volatility parameters used in the tree construction were chosen by

a best fit to sample standard deviations for one year of historical data prior to 1st October

1997.  Interest rates are assumed to be 6%.

Table 4.1 Value of European and American Options Calculated From the Tree

Options on Spot Options on Future
Steps/ Euro Euro Amer Amer Euro Euro Amer Amer
Year Call Put Call Put Call Put Call Put

20 1.925 1.925 2.401 2.097 1.550 1.694 1.577 1.728
40 1.918 1.918 2.395 2.093 1.543 1.688 1.573 1.722
60 1.914 1.914 2.385 2.089 1.539 1.684 1.569 1.719
80 1.911 1.911 2.389 2.087 1.537 1.681 1.567 1.717
100 1.909 1.909 2.385 2.086 1.535 1.679 1.565 1.715
120 1.907 1.907 2.387 2.085 1.533 1.678 1.564 1.714
140 1.906 1.906 2.383 2.084 1.532 1.677 1.563 1.713
160 1.905 1.905 2.386 2.083 1.531 1.676 1.562 1.712
180 1.904 1.904 2.384 2.082 1.530 1.675 1.561 1.711
200 1.904 1.904 2.383 2.082 1.530 1.675 1.561 1.711

Analytical 1.904 1.904 1.530 1.675

We also compare the prices of European options calculated from the tree with the analytical

values calculated via equations (3.6) and (3.7).  Table 4.1 illustrates that prices calculated

from the tree converge rapidly to the analytical price.  It can also be seen from Table 4.1 that

there is an early exercise premium associated with both options on the spot price and on the

forward price due to the fact that the downward sloping forward curve implies a significant

convenience yield on the spot asset.

The nature of the construction of the tree implies that hedge parameters can be quickly and

easily calculated.  If we calculate hedge parameters with respect to some ‘shift’ in the forward
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curve, then this shift only affects the displacement coefficients - it doesn’t effect the position of

the branches relative to the central branch or the probabilities associated with the branches.

5 Pricing General Path Dependent Options in Spot Price Trees

Having constructed trinomial trees for the spot energy process we show in this section how to

price general path dependent options using the techniques developed in Hull and White [1993]

(HW) for a Black and Scholes [1973] world and extended by Clewlow and Strickland [1999a]

(CS) to multi-factor interest rate models.

5.1 Pricing General Path Dependent Contingent Claims

Assume we wish to price a general path dependent option whose payoff depends on some

function ),0);,(( stTtstFG ≤≤≤  of the path of the forward price curve.  The procedure

developed in HW and CS follows a number of steps.  Firstly, the user determines the range

(i.e.  the minimum and maximum) of the possible values of G(.) which can occur for every

node in the tree.  This is achieved by stepping forward through the tree from the origin to the

maturity date computing, at each node, the minimum and maximum value of G(.) given the

value at the nodes at the previous time step which have branches to the current node and the

forward curve at the current node.

Secondly, we choose an appropriate set of values of G(.) between the minimum and maximum

possible for each node.  In choosing this set of values we note that the nodes which lie on the

upper and lower edges of the tree have only one path which reaches them and therefore there

can be only one value of G(.).  The largest range of values will typically occur in the central

section of the tree.  The number of values we consider should in general increase only linearly

with the number of time steps and also decrease linearly from the central nodes of the tree

down to one at the edges of the tree in order to control the computational requirements.  Let

ni j,  be the number of values we store at node (i,j) and kjiG ,, , k = 1,..., ni j,  be the values of

G(.) where 1,, jiG  is the minimum and 
jinjiG

,,,  is the maximum.  Clewlow and Strickland [1998]

suggest choosing ni j,  to be
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( ))(1, jabsin ji −+= β (5.1)

so that ni j,  will always be one at the edges of the tree and iβ+1  in the centre of the tree.  In

this way we can increase β to increase the accuracy of the approximation by considering more

values of G(.).  In choosing the actual set of ni j,  values for each node we should consider the

distributional properties of the function G(.).  This will vary depending on the nature of G(.)

and therefore must be considered on a case by case basis.

The third step in the procedure is to set the value of the option at maturity at every node and

for every value of G(.)

kjFtC kjNNkjN ,);,(C ,,,, ∀= (5.2)

Finally, we step back through the tree computing discounted expectations and applying the

early exercise condition at every node and for every value of G(.)

( )djijidmjijimujijiu
tiif

kji CpCpCpeC ,1,1,,,,1,,,1,1,,
)1,(

,, −++++
∆+− ++= (5.3)

where )1,( +iif  denotes the one period forward rate from time step i to time step i+1 and

where Ci j u+ +1 1, , , Ci j m+1, , , Ci j d+ −1 1, ,  are the values of the option at time step i+1, given the

current Gi,j,k, for upward, middle and downward branches of the spot price.  These are

obtained by computing the value of G(.), given the current value, after upward, middle and

downward branches ujiG ,1,1 ++ , mjiG ,,1+ , djiG ,1,1 −+ .

The values ujiG ,1,1 ++ , mjiG ,,1+ , djiG ,1,1 −+ .and therefore also the option values Ci j u+ +1 1, , , Ci j m+1, , ,

Ci j d+ −1 1, , , will not in general be stored at the upward, middle and downward nodes and

therefore must be obtained by interpolation.  For example using linear interpolation we have

( )
l

lu

lu

l kjiuji
kjikji

kjikji
kjiuji GG

GG

CC
CC ,1,1,1,1

,1,1,1,1

,1,1,1,1
,1,1,1,1 ++++

++++

++++
++++ −











−

−
+= (5.4)
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where k l  and ku  are such that 
ul kjiujikji GGG ,1,1,1,1,1,1 ++++++ ≤≤  and k ku l= + 1.  That is the two

values of G(.) which lie closest to either side of ujiG ,1,1 ++  are found and a linear interpolation

between these is done to obtain an estimate for Ci j u+ +1 1, , .  The value of the path dependent

contingent claim is read from the tree as the value of 0,0,0C .

5.2 Pricing Asian Options in a Trinomial Tree

As a specific example of the generalised methodology outlined in section 5.1 we price

European and American versions of an average price call option, where the average is taken

over the spot energy price on the fixing dates lt , l = 1, …, L.

Let there be a total of N time steps from the start of the life of the option until its maturity.  In

order to find the range of values of the average at each node we step forward through the tree

from i=0 to i=N.  If we have found the range for all nodes up to time step i-1 then for any

node (i,j) the minimum average is determined by the minimum average of the lowest node at

time step i-1 with a branch to the current node and the spot price at the current node.  The

minimum average is given by







=

+
=

−

−−

otherwise

date fixing a i.e.   if

1,,1

11,,1

1,,

l

i

l

ji

mi
i

jiji

ji

G

tt
m

SmG

G (5.5)

where mi  is the number of fixing dates which have occurred up to time step i and node

( , )i j l− 1  is the lowest node with a branch to node (i,j).  Similarly the maximum average is

determined by the maximum average of the highest node at time step i-1 with a branch to the

current node and the energy spot price at the current node







=
+

=

−

−−

otherwise

date fixing a i.e.   if

,,1

1,,1

,,

nji

mi
i

jinji

nji

u

i

u

G

tt
m

SmG

G (5.6)
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where node ( , )i ju− 1  is the highest node with a branch to node (i,j).  Now since the

arithmetic average of the spot price is essentially a sum of lognormally distributed prices it will

also be approximately lognormally distributed.  We therefore choose a log-linear set for the

ni j,  values of the average at each node (i,j) which gives

hk
jikji eGG )1(

1,,,,
−= (5.7)

where 
1

)ln()ln(

,

1,,,,

−
−

=
ji

jinji

n

GG
h .

In order to determine the option values of equation (5.4) we first compute what the average

would be, given the current average, after upward, middle and downward branches ujiG ,1,1 ++ ,

mjiG ,,1+ , djiG ,1,1 −+







=
+

= ++
+

+

++

otherwise

date fixing a i.e.   if

,,

1
1

1,,

,1,1
1

kji

mi
i

jikji

uji

G

tt
m

SmG

G i (5.8)
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,,

1
1

1,,

,1,1
1

kji

mi
i

jikji

dji

G

tt
m

SmG

G i (5.10)

5.3 A Numerical Example

In this section we price European and American versions of a fixed strike average price call

option on crude oil with 1 year to maturity and where the terminal payoff is determined by the

daily average of the crude oil price during the last month of the life of the option.  The

valuation date is the 1st October 1997, the tree is constructed to be consistent with the
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downward forward curve in Figure 4.1, using the same parameters as used for Table 4.1.

Table 5.1 contains the results.

Table 5.1 Convergence of European and American Fixed Strike

Average Rate Call Options

European
Max.  Number of Values for Average

Steps/Year 4 12 20
12 1.869 1.869 1.869
60 1.877 1.854 1.852
108 1.911 1.858 1.853
168 1.958 1.865 1.856
216 1.998 1.872 1.859

American
12 1.922 1.922 1.922
60 1.969 1.949 1.947
108 2.037 1.986 1.981
168 2.113 2.008 2.000
216 2.173 2.022 2.009

Table 5.1 shows the convergence of both the European and American option values as we

increase both the numbers of time steps per year and also the maximum number of averages at

each node (see equation (5.1)).  A further increase in either of these dimensions does not

achieve greater accuracy of the option value.

5 Summary and Conclusions

In this paper we have developed a single-factor modeling framework which is consistent with

market observable forward prices and volatilities.  We derived analytical formulae for the

forward price curve at a future date, standard European options on spot and forward prices,

caps, floors, collars and swaptions.  We have also shown how American style and exotic

energy derivatives can be priced using trinomial trees, which are constructed to be consistent

with the forward curve and volatility structure.  As an example of the application of the

trinomial tree technique we described the pricing of European and American Asian options

and gave an illustrative example of the convergence properties of the procedure.  The analysis

in this paper extends the results in Schwartz [1997] and Amin, et al.  [1995].
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Appendix A : Proof of the Spot Price SDE

From equation (2.1) we have that forward prices satisfy the following SDE;

)(),(
),(

),(
tdzTt

TtF

TtdF
σ=

(A.1)

This lognormal specification allows the following solution for the forward price;





 +−= ∫∫

tt
udzTuduTuTFTtF

00

2 )(),(),(
2

1
exp),0(),( σσ (A.2)

The process for the spot can be obtained by setting T = t;





 +−== ∫∫
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00

2 )(),(),(
2

1
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Differentiating we obtain;
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∂
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For the specific single factor model of this paper we have;

)(), tTeTt −−=( ασσ (A.5)

)(),( tTe
T

Tt −−−=
∂

∂ αασ
σ

(A.6)

Let

)(),()(
)(

)(
tdzttdtty

tS

tdS
σ+= (A.7)

where



Valuing Energy Options in a One Factor Model Clewlow and Strickland

energy_single_factor 23
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Therefore we have;
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From (A.3), we have;
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implying
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Therefore
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α
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and so, after rearranging, we obtain;
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From equation (3.4) we have;





 +−= ∫∫ −−−− t utt ut udzeduetFtS

0

)(

0

)(22 )(
2

1
exp),0()( αα σσ (B.3)

Now [ ]tt ut edue αα

α
σ

σ 2
2

0

)(22 1
2

−−− −=∫  which implies that

[ ]tt ut e
tF

tS
udze αα

α
σ

σ 2
2

0

)( 1
4),0(

)(
ln)( −−− −+








=∫ (B.4)

Also ∫∫∫ −−
−

−
−−− ==

t ut

t

T
t uTt uT udze

e

e
udzeeudze

0

)(

00

)( )()()( α
α

α
ααα σσσ , substituting from equation

(B.4) we obtain;

[ ]







−+








= −−−−−∫ ttTt uT e

tF

tS
eudze ααα

α
σ

σ 2
2

)(

0

)( 1
4),0(

)(
ln)( (B.5)

Substituting into equation (B.1), using equations (B.2) and (B.5), and simplifying we obtain;
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Appendix C : Proof of the Analytical Formula for a Swaption

From equation (3.11) we have;
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Let S* be given by the solution to the following;
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Now let Ki be given by;

NiTiTTSFK i ,...,1),,*,( =∆+= (C.3)

Since the forward price F(S(T),T,s) is monotonically increasing in S(T) (see equation (2.5))

then we have;

),,);,(,(
1

),,,,;(
1

TiTTKTiTtFtc
N

TNsTKtSwpn
N

i
i ∆+∆+=∆ ∑

=

(C.4)



Valuing Energy Options in a One Factor Model Clewlow and Strickland

energy_single_factor 26

Appendix D : Proof of the Transition Probabilities

Under the simplified process for x  of section 4.1 we have

txxE ji ∆−=∆ ,][ α (D.1)

222 ][][ xEtxE ∆+∆=∆ σ (D.2)

Recall from section 4.1 that k determines the destination level of x  of the middle branch from

node (i,j), therefore equating the first and second moments of ∆x in the tree with the values

given by equations (D.1) and (D.2) we obtain;

txxjkpxjkpxjkp jijidjimjiu ∆−=∆−−+∆−+∆−+ ,,,,,,, ))1(()())1(( α (D.3)
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Also, we require that the sum of the probabilities should be equal to one;

1,,,,,, =++ jidjimjiu ppp (D.5)

Solving the system of equations (D.3), (D.4) and (D.5) we obtain;
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Appendix E : Proof of the Adjustment Term for a[i]

From equation (4.9) we have
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Expressing the spot price Si,j in terms of jix ,  we obtain;
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Rearranging equation (E.3) yields;
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