333 research outputs found

    Beat histogram features for rhythm-based musical genre classification using multiple novelty functions

    Get PDF
    In this paper we present beat histogram features for multiple level rhythm description and evaluate them in a musical genre classification task. Audio features pertaining to various musical content categories and their related novelty functions are extracted as a basis for the creation of beat histograms. The proposed features capture not only amplitude, but also tonal and general spectral changes in the signal, aiming to represent as much rhythmic information as possible. The most and least informative features are identified through feature selection methods and are then tested using Support Vector Machines on five genre datasets concerning classification accuracy against a baseline feature set. Results show that the presented features provide comparable classification accuracy with respect to other genre classification approaches using periodicity histograms and display a performance close to that of much more elaborate up-to-date approaches for rhythm description. The use of bar boundary annotations for the texture frames has provided an improvement for the dance-oriented Ballroom dataset. The comparably small number of descriptors and the possibility of evaluating the influence of specific signal components to the general rhythmic content encourage the further use of the method in rhythm description tasks

    Music Information Retrieval in Live Coding: A Theoretical Framework

    Get PDF
    The work presented in this article has been partly conducted while the first author was at Georgia Tech from 2015–2017 with the support of the School of Music, the Center for Music Technology and Women in Music Tech at Georgia Tech. Another part of this research has been conducted while the first author was at Queen Mary University of London from 2017–2019 with the support of the AudioCommons project, funded by the European Commission through the Horizon 2020 programme, research and innovation grant 688382. The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Music information retrieval (MIR) has a great potential in musical live coding because it can help the musician–programmer to make musical decisions based on audio content analysis and explore new sonorities by means of MIR techniques. The use of real-time MIR techniques can be computationally demanding and thus they have been rarely used in live coding; when they have been used, it has been with a focus on low-level feature extraction. This article surveys and discusses the potential of MIR applied to live coding at a higher musical level. We propose a conceptual framework of three categories: (1) audio repurposing, (2) audio rewiring, and (3) audio remixing. We explored the three categories in live performance through an application programming interface library written in SuperCollider, MIRLC. We found that it is still a technical challenge to use high-level features in real time, yet using rhythmic and tonal properties (midlevel features) in combination with text-based information (e.g., tags) helps to achieve a closer perceptual level centered on pitch and rhythm when using MIR in live coding. We discuss challenges and future directions of utilizing MIR approaches in the computer music field

    Evaluating probabilistic forecasts with scoringRules

    Get PDF
    Probabilistic forecasts in the form of probability distributions over future events have become popular in several fields including meteorology, hydrology, economics, and demography. In typical applications, many alternative statistical models and data sources can be used to produce probabilistic forecasts. Hence, evaluating and selecting among competing methods is an important task. The scoringRules package for R provides functionality for comparative evaluation of probabilistic models based on proper scoring rules, covering a wide range of situations in applied work. This paper discusses implementation and usage details, presents case studies from meteorology and economics, and points to the relevant background literature

    AQUATK: An Audio Quality Assessment Toolkit

    Full text link
    Recent advancements in Neural Audio Synthesis (NAS) have outpaced the development of standardized evaluation methodologies and tools. To bridge this gap, we introduce AquaTk, an open-source Python library specifically designed to simplify and standardize the evaluation of NAS systems. AquaTk offers a range of audio quality metrics, including a unique Python implementation of the basic PEAQ algorithm, and operates in multiple modes to accommodate various user needs

    Evaluating Probabilistic Forecasts with

    Get PDF
    • …
    corecore