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Introduction

Rhythm is a basic property of acoustic signals [1][2], with
a presumed common basis for its perception grounded
both in speech and music [3], hinting towards a similar-
ity which can be tracked in the acoustic signals as well.
For speech signals, rhythm analysis can provide relevant
conclusions both with respect to linguistic questions (e.g.
language rhythm typology) and for applications in speech
technology (e.g. in multilingual dialogue systems). How-
ever, speech rhythm is difficult to analyze, since its mod-
eling or measurement are not straightforward.
In phonetics, the measurement of speech rhythm has
mainly been performed by the development of statisti-
cal measures (known as rhythm metrics) that capture
the patterns of intervals of and between salient speech
elements such as vowels, consonants and syllables. Such
metrics include the standard deviation of consonant in-
tervals ∆C, the percentage of vocalic intervals %V and
the Pairwise Variability Index (PVI) [4][5][6]. Although
they have been used extensively for speech rhythm de-
scription and the investigation of rhythmical differences
between languages, those measures have also been criti-
cized [7] for lack of robustness and for producing inconsis-
tent results with respect to the rhythm class hypothesis,
which states that languages belong either to a stress-
timed or to a syllable-timed group [8]. Further problems
include the manual or automatic annotation of speech
elements which is required in order to perform the anal-
ysis, as well as that the focus lies only on high-level lan-
guage elements (such as syllables or consonants-vowels)
and their duration patterns for rhythm description in-
stead of examining directly measurable signal properties.
Various technical attempts to model rhythm were also
undertaken in the field of rhythm-based language identi-
fication (LID). A number of studies ([10][11][12][13]) have
extracted rhythmic units by using the concept of auto-
matic segmentation in pseudosyllables (structures of the
form CnV , where C is a consonant and V a vowel) and
calculating parameters concerning duration and proper-
ties of speech elements such as fundamental frequency
or energy. Such studies have achieved satisfactory re-
sults (60 − 80%) in rhythm-based LID for a number of
speech corpora, which shows the importance of rhythm
and prosody based features for the LID task. They still,
however, bear the disadvantage of taking into account
higher-level language units such as syllables to extract
speech rhythm.
In order to overcome these problems, we propose an alter-
native approach for rhythm extraction and modeling for
LID. We draw inspiration from the field of Music Infor-

mation Retrieval (MIR), where there have been numer-
ous approaches for rhythm extraction, for instance for the
problem of automatic musical genre classification. One
of the widely used representations is the Beat Histogram,
which has emerged as a method for rhythmic content de-
scription for audio classification and has been described
in [15][16][17]. Its basic premise is that the rhythm of an
audio excerpt can be described through creating a repre-
sentation of the distribution of its periodicities in a very
low frequency area and extracting relevant statistical and
other properties from it. A similar approach has been re-
cently presented by Tilsen & Arvaniti [9], who modelled
speech rhythm by extracting periodicities and from the
signal envelope and analyzing their relationships.
This paper describes the use of the beat histogram for
the creation of speech rhythm features for LID by using
several relevant signal properties as the basis for its cre-
ation. The goals are the evaluation of those novel features
for rhythm-based LID and the analysis of speech rhythm
through investigation of the rhythm class hypothesis. In
the following, the methods for speech rhythm feature ex-
traction are described. The classification setup with two
supervised learning algorithms as well as the experimen-
tal results for one multilingual speech corpus are pre-
sented and discussed.

Method

The beat histogram is created through the extraction of
the temporal trajectory of a given signal quantity or its
difference (also known as a Novelty Function [18]). Af-
ter the signal is preprocessed (mean removal, filtering
etc.), the novelty function of the signal amplitude or its
envelope is calculated, half-wave rectified and periodici-
ties are represented for an area typically between 30 and
300 BPM, by using a method such as the Autocorre-
lation Function (ACF) [15], the Discrete Fourier Trans-
form (DFT) or the comparison with a filter bank of tuned
bandpass filters [14][16]. The end result is a compact rep-
resentation of the magnitude and value of all important
signal periodicities, where for example the tempo (main
periodicity) of the analyzed track can be observed. The
properties of the rhythmic content of the excerpt can be
then extracted with the use of descriptors such as the
mean, standard deviation and other distribution statis-
tics, as well as more specific descriptors such as the am-
plitude and frequency of the most salient peak.
In the context of rhythm description and musical genre
classification, most of the studies have used the beat his-
togram with the signal amplitude envelope as a novelty
function. This approach, however, does not take into ac-
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count changes in other signal properties such as tonal or
general spectral changes which might have other period-
icities. Therefore, it is sensible to expand the beat his-
togram by taking into account novelty functions of other
signal properties whose change over time is relevant. Ex-
periments in musical genre classification using amplitude,
tonal and spectral shape novelty functions have shown
promising results for a wide range of datasets [19]. This
approach is therefore adapted here for speech: We use
three categories of novelty functions so as to capture the
characteristics of the most important temporal trajecto-
ries in the signal:

- amplitude-based, accounting for changes in signal
energy or loudness reflecting changing intonation,

- fundamental frequency-based (F0), tracking
changes in speech prosody and

- spectral shape-based, accounting for changes in
spectral content which reflect changes of speech ele-
ments (consonants/vowels) or phoneme position.

The F0 is extracted through the use of a harmonic prod-
uct spectrum algorithm [20] on a filtered version of the
speech signal (4th-order Butterworth lowpass with a cut-
off frequency at 800 Hz) so as to ensure tracking of the
fundamental frequency alone. Three established fea-
tures are extracted to track spectral changes: the spec-
tral flux (indicating general spectral change), the spec-
tral flatness (indicating tonalness/noisiness) and the
spectral centroid (a measure of the spectral centre-
of-weight), the latter also on a filtered version of the
signal (4th-order Butterworth bandpass between 300 Hz
and 3300 Hz) to insure that only formant area frequencies
are considered. From the corresponding beat histograms,
we then extract a list of standard features, relating to
periodicity distribution statistics and to the position and
salience of the beat histogram peaks, which can be seen in
table 1. More information on the extracted novelty func-
tions as well as on the subfeatures listed in Table 1 can be
found in [21]. For the beat histograms here, a periodicity
range from 0.5 Hz to 10 Hz was selected as characteristic
of the most important speech rhythms. All features are
extracted over a frame-by-frame basis: The speech files
are separated in short frames of 3 s with an overlap of
50%. In the case of the rhythmic features, the beat his-
tograms are averaged over all frames and the subfeatures
extracted from them. In total, the rhythm feature set
comprises 5 features times 19 subfeatures = 95 features.

Table 1: Subfeatures extracted from Beat Histograms.

Distribution Peak

Mean (ME) Salience of Strongest Peak (A1)

Standard Deviation (SD) Salience of 2nd Stronger Peak (A0)

Mean of Derivative (MD) Period of Strongest Peak (P1)

SD of Derivative (SDD) Period of 2nd Stronger Peak (P2)

Skewness (SK) Period of Peak Centroid (P3)

Kurtosis (KU) Ratio of A0 to A1 (RA)

Entropy (EN) Sum (SU)

Geometrical Mean (GM) Sum of Power (SP)

Centroid (CD)

Flatness (FL)

High Frequency Content (HFC)

Experiments and Results

Experiments

In order to be able to conduct an evaluation of the pro-
posed beat histogram features, a baseline feature set
needed to be established. To that purpose, extraction
of a series of non-rhythmic features was undertaken, by
calculating the feature values over all texture frames (by
keeping the average value inside an analysis window)
of a speech file. A number of acoustic features such
as MFCCs, LPCs and SDCs have been used widely for
non-rhythmic language identification [22][23]. In order
to maximize comparability with our rhythmic features
and to be able to estimate the merit introduced by the
use of the beat histograms, we used as a baseline fea-
ture set all five novelty functions listed in the previous
section. The features on each novelty function can be
seen in the Distribution column of Table 1. In total, the
baseline feature set comprises 5 features times 11 sub-
features = 55 features. For supervised classification, we
use the established Support Vector Machines (SVM) [24],
which have been used extensively and has shown good
results in many classification problems up to date. For
comparison, we also use the basic and simple k-Nearest-
Neighbors algorithm. For the SVM algorithm the Radial
Basis Function (RBF) Kernel is used with the parame-
ters C and γ determined through grid search, while for
the kNN algorithm the euclidean distance was used with
k = 1, 3, 5. All experiments take place as multiclass one-
vs-one classification problems with 10-fold cross valida-
tion and standardization of the features (z-score, sepa-
rately for train and test set). In order to evaluate the
classification we use the average accuracy (Acc.) as a
performance measure, defined as the proportion of cor-
rectly classified samples to all samples classified, which
can be easily derived from the confusion matrices as the
sum of the diagonal to the total samples count.
We tested our features on one established multilingual
speech corpus, MULTEXT [25]. This is a read speech
dataset, comprising five indoeuropean languages (En-
glish, French, German, Italian and Spanish) with high
signal quality (20 kHz sample rate, 16 bit quantization
depth). The dataset contains between 10 and 20 passages
with an average length of 20 s from 10 speakers per lan-
guage (5 male and 5 female). The choice of this dataset
is of importance, since it has been used extensively for
rhythm-based LID and can allow conclusions both to
rhythm-based automatic LID performance and language
typology, since the languages contained are those proto-
typically belonging to the two basic groups after rhythm
class hypothesis [8]: English and German to the stress-
timed, French, Spanish and Italian to the syllable-timed.

Results

Results of classification can be seen in Fig. 1 and Tables 2
and 3. Concerning classification accuracy, two tendencies
can be observed: First, concerning overall accuracy, the
SVM algorithm outperforms the kNN in all cases, with
the kNN showing very low scores (even for k = 5 which
was the best case). Second, for the SVM, the rhythmic
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feature set has slightly better accuracy than the baseline,
whereas for the kNN, the baseline set shows moderately
better performance than the rhythmic set. Furthermore,
for the SVM results are clearly above the average prior
(Pr.) of 20%(the percentage of the samples of each class
in the dataset) and satisfactory, whereas for the kNN,
accuracy is low and below the prior for both feature sets.
With regards to language rhythm typology, the pure form
of the rhythm class hypothesis does not seem to be con-
firmed in either case: for the kNN, all languages are con-
fused with English, except for English itself which is clas-
sified as German, hinting towards a rhythmic similarity
only between stress-timed languages. For the SVM, all
languages are confused with French, but neither Italian
and Spanish nor German and English are confused with
each other more than with other languages.

SVM kNN
0

10

20

30

40

50

60

70

80

Classification Algorithms

A
c

c
u

ra
c

y
 (

%
)

 

 

Rhythmic Feature Set

Baseline Feature Set

Figure 1: Classification results

Table 2: Confusion Matrix for the kNN algorithm, rhythmic
feature set. All numbers indicate sample count, rows Acc.
and Pr. are given as percentages, average accuracy 7.2%

True
Predicted

Eng. Fre. Ger. Ita. Spa.

Eng. 12 27 66 24 21
Fre. 62 2 33 2 1
Ger. 121 23 40 12 4
Ita. 97 14 38 0 1
Spa. 90 15 42 0 1
Acc. 8 2 20 0 1
Pr. 20 13.7 27.3 20 20

Table 3: Confusion Matrix for the SVM algorithm, rhythmic
feature set. All numbers indicate sample count, rows Acc.
and Pr. are given as percentages, average accuracy 70.4%

True
Predicted

Eng. Fre. Ger. Ita. Spa.

Eng. 110 22 5 5 8
Fre. 4 76 5 9 6
Ger. 15 22 121 23 19
Ita. 3 21 5 114 7
Spa. 7 25 5 6 107
Acc. 73.3 76 60.5 76 71.3
Pr. 20 13.7 27.3 20 20

Discussion

The results presented in the previous Section are promis-
ing for further research: it is clear that the use of beat his-
togram features can be useful for rhythm-based LID: The
identification accuracy using the SVM algorithm (70.4%)
lies in the same range or is better than the ones achieved
in other studies [13] (67 ± 8%). An interesting point is
the performance of the baseline set, which is compara-
ble to that of the rhythmic feature set, showing that the
rhythmic features can explain as much language-specific
variability in the speech signal as simple, more general
features. However, it should be noted that the use of
other general features can achieve even higher perfor-
mance scores [22][23], indicating that there is room for
improvement, e.g. through the use of other novelty func-
tions or features on the beat histogram.
With respect to classification algorithms, the SVMs are
definitely advantageous in performance for the rhythmic
feature set. Indeed, the very low performance of the kNN
(in contrast to the comparable performance for the base-
line set) is an indication that rhythmic features require
more robust machine learning algorithms for identifica-
tion, a result which has been confirmed through other
studies [11]. Another possible reason for the lower per-
formance of the kNN is the lack of a sufficient number
of training samples or the relatively high number of fea-
tures, resulting in the curse of dimensionality [21]. A pos-
sible amendment would be to perform a principal com-
ponent analysis (PCA) and use the most important com-
ponents as features.
Concerning the speech corpus itself, the attained per-
formance shows that for read speech of good quality,
features can be extracted which are informative of the
rhythmic content and can be used to identify languages
on that basis. With respect to the different languages
of this dataset, it is interesting to observe from the con-
fusion matrix (Table 2) how French seems to act as a
”universal attractor” for all other classes. This effect
could be due to actual difference of the french language
rhythm in comparison to other languages, or to particular
characteristics of this specific speech corpus (such as it
containing spontaneous speech). In general, the rhythm
class hypothesis, which would classify English and Ger-
man together as stress-timed and the other as syllable-
timed languages, does not seem to be corroborated on
basis of those data.

Conclusions

In this paper we presented first results on the use of novel
features for rhythm analysis and rhythm-based LID. The
use of the beat histogram for speech rhythm analysis
is innovative and results are promising, harboring their
further use. For the rhythm descriptors, not only the
signal amplitude but also other rhythm-relevant signal
quantities were used as basis for the creation of the beat
histogram. Furthermore, a comprehensive array of sub-
features was extracted from the beat histograms, which
provides ample information about the periodicities in the
signal and their patterns. We could show that classifica-
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tion performance for one multilingual speech corpus us-
ing the SVM algorithm is comparable to that of similar
studies and close to that when using other basic, non-
rhythmic features. The proposed method has the advan-
tage that it takes into account the rhythmic on the sig-
nal and not on the speech element level, which throws a
new light on speech rhythm and allows its analysis from
different aspects. Another important advantage of the
proposed method for speech rhythm analysis is that it is
fully automatic and can be extended for larger datasets,
while providing significant information on speech period-
icities. This provides another aim for further research:
The application of the method to speech corpora with
different content (such as the OGI-MLTS [26], which con-
tains more languages and spontaneous speech) and which
are much more comprehensive (such as the GLOBAL-
PHONE [27]) is scheduled. At this point, the relation of
the rhythm features to other speech rhythm metrics and
language elements such as syllables and consonant-vowel
clusters is unclear, suggesting another direction for fu-
ture work. Further future goals include the investigation
of optimal parameter settings for feature extraction and
the conduct of feature selection to identify the most infor-
mative features, as well as the utilization of unsupervised
classification methods with the focus on evaluating the
method and clarifying its merits for rhythm-based LID.

References

[1] Patel, A. D.: Music, language, and the brain. Oxford
university press, Oxford, 2008.

[2] London, J.: Hearing in time. Oxford University
Press, New York, 2012.
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