159 research outputs found

    Collision and Diffusion in Microwave Breakdown of Nitrogen Gas in and around Microgaps

    Get PDF
    The microwave induced breakdown of N2 gas in microgaps was modeled using the collision frequency between electrons and neutral molecules and the effective electric field concept. Low pressure breakdown at the threshold electric field occurs outside the gap, but at high pressures it is found to occur inside the microgap with a large threshold breakdown electric field corresponding to a very large electron oscillation amplitude. Three distinct pressure regimes are apparent in the microgap breakdown: a low pressure multipactor branch, a mid-pressure Paschen branch, both of which occur in the space outside the microgap, and a high pressure diffusion-drift branch, which occurs inside the microgap. The Paschen and diffusion-drift branches are divided by a sharp transition and each separately fits the collision frequency model. There is evidence that considerable electron loss to the microgap faces accompanies the diffusion-drift branch in microgaps.Comment: 4 figure

    Relaxation of Microwave Nonlinearity in a Cuprate Superconducting Resonator

    Get PDF
    The second- and third-order nonlinear microwave response of a superconducting YBa2Cu3O7 thin-film resonator was synchronously measured using three input tones. This technique permits the local measurement, and hence mapping, of intermodulation distortion inside the resonator. Second- and third-order IMD measured with a fixed probe relaxed in remarkably different ways after the removal of a static magnetic field. The second-order IMD relaxed by two different magnetic processes, a fast process that appears related to bulk remanent magnetization and a slow process that fits the description of Bean and Livingston. The third-order IMD relaxes by only one process that is distinct from the two processes controlling second order relaxation

    One in Five Laboratories Using Various Hemoglobin A(1c) Methods Do Not Meet the Criteria for Optimal Diabetes Care Management

    Get PDF
    Background: We assessed the reference change value (RCV) of currently available hemoglobin A(1c) (HbA(1c)) laboratory assays, which is defined as the critical difference between two consecutive HbA(1c) measurements representing a significant change in health status. Methods: We examined the individual laboratory coefficients of variation (CVs) in the Dutch/Belgian quality scheme based on 24 lyophilized samples and calculated the RCV per laboratory (n-220) and per assay method. In addition, two pooled whole blood samples were sent to the participating laboratories. The individual laboratory results were compared to the assigned value +/- an allowable total error (TEa) of 6%. Results: At HbA(1c) values of 41.0 mmol/mol (5.9%-Diabetes Control and Complications Trial [DCCT]) and 61.8 mmol/mol (7.8%-DCCT), 99% and 98%, respectively, of the laboratories reported a value within a TEa limit of 6%. The analytical CV of the HbA(1c) method used in 78% of the laboratories is Conclusions: The analytical performance of the majority of laboratory HbA(1c) methods is within the clinical requirements. However, based on the calculated RCV, 21.8% of the laboratories using different HbA(1c) methods are not able to distinguish an HbA(1c) result of 59 mmol/mol (7.5%-DCCT) from a previous HbA(1c) result of 53 mmol/mol (7.0%-DCCT). It can be presumed that differences in HbA(1c) results of 5 mmol/mol (0.5%-DCCT) do influence treatment decisions

    Rapid and highly variable warming of lake surface waters around the globe

    Get PDF
    In this first worldwide synthesis of in situ and satellite‐derived lake data, we find that lake summer surface water temperatures rose rapidly (global mean = 0.34°C decade−1) between 1985 and 2009. Our analyses show that surface water warming rates are dependent on combinations of climate and local characteristics, rather than just lake location, leading to the counterintuitive result that regional consistency in lake warming is the exception, rather than the rule. The most rapidly warming lakes are widely geographically distributed, and their warming is associated with interactions among different climatic factors—from seasonally ice‐covered lakes in areas where temperature and solar radiation are increasing while cloud cover is diminishing (0.72°C decade−1) to ice‐free lakes experiencing increases in air temperature and solar radiation (0.53°C decade−1). The pervasive and rapid warming observed here signals the urgent need to incorporate climate impacts into vulnerability assessments and adaptation efforts for lakes

    Построение некоторых функций функций в гиперкомплексной числовой системе 4-го порядка

    Get PDF
    Рассмотрены вопросы построения таких обратных функций как логарифм, гиперболические и тригонометрические арксинус и арккосинус. Приведены примеры построения обратных функций для гиперкомплексной числовой системы 4-го порядка.Розглянуто питання побудови таких обернених функцій як логарифм, тригонометричні та гіперболічні арксинус і арккосинус. Наведено приклади побудови обернених функцій для гіперкомплексної системи 4-го порядку.Questions of construction of such inverse functions as the logarithm, hyperbolic and trigonometrical arc sine and arc cosine are considered. Examples of construction of inverse functions for the 4th order hypercomplex numerical system are given

    Impact of occupational pesticide exposure on the human gut microbiome

    Get PDF
    The rising use of pesticides in modern agriculture has led to a shift in disease burden in which exposure to these chemicals plays an increasingly important role. The human gut microbiome, which is partially responsible for the biotransformation of xenobiotics, is also known to promote biotransformation of environmental pollutants. Understanding the effects of occupational pesticide exposure on the gut microbiome can thus provide valuable insights into the mechanisms underlying the impact of pesticide exposure on health. Here we investigate the impact of occupational pesticide exposure on human gut microbiome composition in 7198 participants from the Dutch Microbiome Project of the Lifelines Study. We used job-exposure matrices in combination with occupational codes to retrieve categorical and cumulative estimates of occupational exposures to general pesticides, herbicides, insecticides and fungicides. Approximately 4% of our cohort was occupationally exposed to at least one class of pesticides, with predominant exposure to multiple pesticide classes. Most participants reported long-term employment, suggesting a cumulative profile of exposure. We demonstrate that contact with insecticides, fungicides and a general “all pesticides” class was consistently associated with changes in the gut microbiome, showing significant associations with decreased alpha diversity and a differing beta diversity. We also report changes in the abundance of 39 different bacterial taxa upon exposure to the different pesticide classes included in this study. Together, the extent of statistically relevant associations between gut microbial changes and pesticide exposure in our findings highlights the impact of these compounds on the human gut microbiome.</p

    Impact of occupational pesticide exposure on the human gut microbiome

    Get PDF
    The rising use of pesticides in modern agriculture has led to a shift in disease burden in which exposure to these chemicals plays an increasingly important role. The human gut microbiome, which is partially responsible for the biotransformation of xenobiotics, is also known to promote biotransformation of environmental pollutants. Understanding the effects of occupational pesticide exposure on the gut microbiome can thus provide valuable insights into the mechanisms underlying the impact of pesticide exposure on health. Here we investigate the impact of occupational pesticide exposure on human gut microbiome composition in 7198 participants from the Dutch Microbiome Project of the Lifelines Study. We used job-exposure matrices in combination with occupational codes to retrieve categorical and cumulative estimates of occupational exposures to general pesticides, herbicides, insecticides and fungicides. Approximately 4% of our cohort was occupationally exposed to at least one class of pesticides, with predominant exposure to multiple pesticide classes. Most participants reported long-term employment, suggesting a cumulative profile of exposure. We demonstrate that contact with insecticides, fungicides and a general “all pesticides” class was consistently associated with changes in the gut microbiome, showing significant associations with decreased alpha diversity and a differing beta diversity. We also report changes in the abundance of 39 different bacterial taxa upon exposure to the different pesticide classes included in this study. Together, the extent of statistically relevant associations between gut microbial changes and pesticide exposure in our findings highlights the impact of these compounds on the human gut microbiome.</p

    Impact of occupational pesticide exposure on the human gut microbiome

    Get PDF
    The rising use of pesticides in modern agriculture has led to a shift in disease burden in which exposure to these chemicals plays an increasingly important role. The human gut microbiome, which is partially responsible for the biotransformation of xenobiotics, is also known to promote biotransformation of environmental pollutants. Understanding the effects of occupational pesticide exposure on the gut microbiome can thus provide valuable insights into the mechanisms underlying the impact of pesticide exposure on health. Here we investigate the impact of occupational pesticide exposure on human gut microbiome composition in 7198 participants from the Dutch Microbiome Project of the Lifelines Study. We used job-exposure matrices in combination with occupational codes to retrieve categorical and cumulative estimates of occupational exposures to general pesticides, herbicides, insecticides and fungicides. Approximately 4% of our cohort was occupationally exposed to at least one class of pesticides, with predominant exposure to multiple pesticide classes. Most participants reported long-term employment, suggesting a cumulative profile of exposure. We demonstrate that contact with insecticides, fungicides and a general “all pesticides” class was consistently associated with changes in the gut microbiome, showing significant associations with decreased alpha diversity and a differing beta diversity. We also report changes in the abundance of 39 different bacterial taxa upon exposure to the different pesticide classes included in this study. Together, the extent of statistically relevant associations between gut microbial changes and pesticide exposure in our findings highlights the impact of these compounds on the human gut microbiome.</p

    Impact of occupational pesticide exposure on the human gut microbiome

    Get PDF
    The rising use of pesticides in modern agriculture has led to a shift in disease burden in which exposure to these chemicals plays an increasingly important role. The human gut microbiome, which is partially responsible for the biotransformation of xenobiotics, is also known to promote biotransformation of environmental pollutants. Understanding the effects of occupational pesticide exposure on the gut microbiome can thus provide valuable insights into the mechanisms underlying the impact of pesticide exposure on health. Here we investigate the impact of occupational pesticide exposure on human gut microbiome composition in 7198 participants from the Dutch Microbiome Project of the Lifelines Study. We used job-exposure matrices in combination with occupational codes to retrieve categorical and cumulative estimates of occupational exposures to general pesticides, herbicides, insecticides and fungicides. Approximately 4% of our cohort was occupationally exposed to at least one class of pesticides, with predominant exposure to multiple pesticide classes. Most participants reported long-term employment, suggesting a cumulative profile of exposure. We demonstrate that contact with insecticides, fungicides and a general “all pesticides” class was consistently associated with changes in the gut microbiome, showing significant associations with decreased alpha diversity and a differing beta diversity. We also report changes in the abundance of 39 different bacterial taxa upon exposure to the different pesticide classes included in this study. Together, the extent of statistically relevant associations between gut microbial changes and pesticide exposure in our findings highlights the impact of these compounds on the human gut microbiome.</p

    Impact of occupational pesticide exposure on the human gut microbiome

    Get PDF
    The rising use of pesticides in modern agriculture has led to a shift in disease burden in which exposure to these chemicals plays an increasingly important role. The human gut microbiome, which is partially responsible for the biotransformation of xenobiotics, is also known to promote biotransformation of environmental pollutants. Understanding the effects of occupational pesticide exposure on the gut microbiome can thus provide valuable insights into the mechanisms underlying the impact of pesticide exposure on health. Here we investigate the impact of occupational pesticide exposure on human gut microbiome composition in 7198 participants from the Dutch Microbiome Project of the Lifelines Study. We used job-exposure matrices in combination with occupational codes to retrieve categorical and cumulative estimates of occupational exposures to general pesticides, herbicides, insecticides and fungicides. Approximately 4% of our cohort was occupationally exposed to at least one class of pesticides, with predominant exposure to multiple pesticide classes. Most participants reported long-term employment, suggesting a cumulative profile of exposure. We demonstrate that contact with insecticides, fungicides and a general “all pesticides” class was consistently associated with changes in the gut microbiome, showing significant associations with decreased alpha diversity and a differing beta diversity. We also report changes in the abundance of 39 different bacterial taxa upon exposure to the different pesticide classes included in this study. Together, the extent of statistically relevant associations between gut microbial changes and pesticide exposure in our findings highlights the impact of these compounds on the human gut microbiome.</p
    corecore