114 research outputs found

    Novel strategies of adoptive immunotherapy: How natural killer cells may change the treatment of elderly patients with acute myeloblastic leukemia

    Get PDF
    Although many attempts have been made to identify novel molecular-targeted therapies for patients with acute myeloid leukemia, their translation into the clinic have had limited impact. In particular, the question of effective and curative treatments for elderly patients, who are not eligible for stem cell transplantation, remains an unmet medical need. To answer this question, a wide range of immunologic therapeutic strategies, mostly T cell based, have been proposed and investigated. At present, however, the clinical results have been largely unsatisfactory. Natural killer cells have recently been used as a means of adoptive immunotherapy with promising clinical results. On the basis of recent clinical reports and moving from the basic immunobiology of natural killer cells, here we discuss some open issues in the clinical translation of natural killer-based adoptive immunotherapy for the management of elderly patients with acute myeloid leukemia

    The tissue inhibitor of metalloproteinases-1 (TIMP-1) promotes survival and migration of acute myeloid leukemia cells through CD63/PI3K/Akt/p21 signaling

    Get PDF
    We and others have shown that the Tissue Inhibitor of Metalloproteinases-1 (TIMP-1), a member of the inflammatory network exerting pleiotropic effects in the bone marrow (BM) microenvironment, regulates the survival and proliferation of different cell types, including normal hematopoietic progenitor cells. Moreover, TIMP-1 has been shown to be involved in cancer progression. However, its role in leukemic microenvironment has not been addressed. Here, we investigated the activity of TIMP-1 on Acute Myelogenous Leukemia (AML) cell functions. First, we found that TIMP-1 levels were increased in the BM plasma of AML patients at diagnosis. In vitro, recombinant human (rh)TIMP-1 promoted the survival and cell cycle S-phase entry of AML cells. These kinetic effects were related to the downregulation of cyclindependent kinase inhibitor p21. rhTIMP-1 increases CXCL12-driven migration of leukemic cells through PI3K signaling. Interestingly, activation of CD63 receptor was required for TIMP-1's cytokine/chemokine activity. Of note, rhTIMP-1 stimulation modulated mRNA expression of Hypoxia Inducible Factor (HIF)-1a, downstream of PI3K/Akt activation. We then co-cultured AML cells with normal or leukemic mesenchymal stromal cells (MSCs) to investigate the interaction of TIMP-1 with cellular component(s) of BM microenvironment. Our results showed that the proliferation and migration of leukemic cells were greatly enhanced by rhTIMP-1 in presence of AML-MSCs as compared to normal MSCs. Thus, we demonstrated that TIMP-1 modulates leukemic blasts survival, migration and function via CD63/PI3K/ Akt/p21 signaling. As a "bad actor" in a "bad soil", we propose TIMP-1 as a potential novel therapeutic target in leukemic BM microenvironment

    Harnessing NK Cells for Cancer Treatment

    Get PDF
    In the last years, natural killer (NK) cell-based immunotherapy has emerged as a promising therapeutic approach for solid tumors and hematological malignancies. NK cells are innate lymphocytes with an array of functional competences, including anti-cancer, anti-viral, and anti-graft-vs.-host disease potential. The intriguing idea of harnessing such potent innate immune system effectors for cancer treatment led to the development of clinical trials based on the adoptive therapy of NK cells or on the use of monoclonal antibodies targeting the main NK cell immune checkpoints. Indeed, checkpoint immunotherapy that targets inhibitory receptors of T cells, reversing their functional blocking, marked a breakthrough in anticancer therapy, opening new approaches for cancer immunotherapy and resulted in extensive research on immune checkpoints. However, the clinical efficacy of T cell-based immunotherapy presents a series of limitations, including the inability of T cells to recognize and kill HLA-Ineg tumor cells. For these reasons, new strategies for cancer immunotherapy are now focusing on NK cells. Blockade with NK cell checkpoint inhibitors that reverse their functional block may overcome the limitations of T cell-based immunotherapy, mainly against HLA-Ineg tumor targets. Here, we discuss recent anti-tumor approaches based on mAb-mediated blocking of immune checkpoints (either restricted to NK cells or shared with T cells), used either as a single agent or in combination with other compounds, that have demonstrated promising clinical responses in both solid tumors and hematological malignancie

    Stem cell transplantation in multiple myeloma and other plasma cell disorders (report from an EBMT preceptorship meeting)

    Get PDF
    The European Society for Blood and Marrow Transplantation Chronic Malignancies Working Party held a preceptorship meeting in Turin, Italy on 25-26 September 2014, to discuss the role of stem cell transplantation (SCT) in the treatment of multiple myeloma and other plasma cell disorders. Scientists and clinicians working in the field gathered to discuss a variety of topics including the results of recent clinical trials, basic research, the concept of minimal residual disease, and immune modulation. As individual presentations revealed, important advances have occurred in our understanding of the pathophysiology of myeloma and the role that SCT, along with other forms of immunotherapy, plays in treating it. Each presentation stimulated discussion and exchange of ideas among the attendants. We decided to summarize and, importantly, to update the meeting proceedings in this review to share stimulating discussions and ideas on potentially novel treatment strategies among clinicians

    Post-Transplant Nivolumab Plus Unselected Autologous Lymphocytes in Refractory Hodgkin Lymphoma: A Feasible and Promising Salvage Therapy Associated With Expansion and Maturation of NK Cells

    Get PDF
    Immune checkpoint inhibitors (CI) have demonstrated clinical activity in Hodgkin Lymphoma (HL) patients relapsing after autologous stem cell transplantation (ASCT), although only 20% complete response (CR) rate was observed. The efficacy of CI is strictly related to the host immune competence, which is impaired in heavily pre-treated HL patients. Here, we aimed to enhance the activity of early post-ASCT CI (nivolumab) administration with the infusion of autologous lymphocytes (ALI). Twelve patients with relapse/refractory (R/R) HL (median age 28.5 years; range 18-65), underwent lymphocyte apheresis after first line chemotherapy and then proceeded to salvage therapy. Subsequently, 9 patients with progressive disease at ASCT received early post-transplant CI supported with four ALI, whereas 3 responding patients received ALI alone, as a control cohort. No severe adverse events were recorded. HL-treated patients achieved negative PET scan CR and 8 are alive and disease-free after a median follow-up of 28 months. Four patients underwent subsequent allogeneic SCT. Phenotypic analysis of circulating cells showed a faster expansion of highly differentiated NK cells in ALI plus nivolumab-treated patients as compared to control patients. Our data show anti-tumor activity with good tolerability of ALI + CI for R/R HL and suggest that this setting may accelerate NK cell development/maturation and favor the expansion of the "adaptive" NK cell compartment in patients with HCMV seropositivity, in the absence of HCMV reactivation

    High feasibility and antileukemic efficacy of fludarabine, cytarabine, and idarubicin (FLAI) induction followed by risk-oriented consolidation: A critical review of a 10-year, single-center experience in younger, non M3 AML patients

    Get PDF
    About 105 consecutive acute myeloid leukemia (AML) patients treated with the same induction-consolidation program between 2004 and 2013 were retrospectively analyzed. Median age was 47 years. The first induction course included fludarabine (Flu) and high-dose cytarabine (Ara-C) plus idarubicin (Ida), with or without gemtuzumab-ozogamicin (GO) 3 mg/m2 (FLAI-5). Patients achieving complete remission (CR) received a second course without fludarabine but with higher dose of idarubicin. Patients not achieving CR received an intensified second course. Patients not scheduled for early allogeneic bone marrow transplantation (HSCT) where planned to receive at least two courses of consolidation therapy with Ara-C. Our double induction strategy significantly differs from described fludarabine-containing regimens, as patients achieving CR receive a second course without fludarabine, to avoid excess toxicity, and Ara-C consolidation is administrated at the reduced cumulative dose of 8 g/m2 per cycle. Toxicity is a major concern in fludarabine containing induction, including the recent Medical Research Council AML15 fludarabine, cytarabine, idaraubicin and G-CSF (FLAG-Ida) arm, and, despite higher anti-leukemic efficacy, only a minority of patients is able to complete the full planned program. In this article, we show that our therapeutic program is generally well tolerated, as most patients were able to receive subsequent therapy at full dose and in a timely manner, with a 30-day mortality of 4.8%. The omission of fludarabine in the second course did not reduce efficacy, as a CR rate of 83% was achieved and 3-year disease-free survival and overall survival (OS) were 49.6% and 50.9%, respectively. Our experience shows that FLAI-5/Ara-C + Ida double induction followed by risk-oriented consolidation therapy can result in good overall outcome with acceptable toxicity. Am. J. Hematol. 91:755\u2013762, 2016. \ua9 2016 Wiley Periodicals, Inc

    Haploientical Transplants with Post-Transplant Cyclophosphamide for Relapsed or Refractory Hodgkin Lymphoma: The Role of Comorbidity Index and Pretransplant Positron Emission Tomography

    Get PDF
    Disease relapse remains an unmet medical need for patients with Hodgkin lymphoma (HL) receiving an allogeneic hematopoietic cell transplantation (HCT). With the aim of identifying patients at high risk for post-transplant relapse, we retrospectively reviewed 41 HL patients who had received haploidentical (haplo) nonmyeloablative (NMA) HCT with high dose post-transplant cyclophosphamide (PT-Cy) for graft-versus-host (GVHD) prophylaxis. Primary refractory disease, relapse within 6 months from autologous stem cell transplantation, age, pretransplant chemotherapy, HCT comorbidity index (HCT-CI), sex mismatch, tumor burden and pretransplant fluorodeoxyglucose positron emission tomography (FDG-PET) status, assessed by Deauville score, were analyzed as variables influencing outcomes. All but 1 patient engrafted: median time to neutrophil and platelet recovery was 15 (interquartile range, 13 to 23) days and 19 (interquartile range, 12 to 28) days, respectively. Cumulative incidence of severe (grade III to IV) acute graft-versus-host disease (GVHD) and 3-year moderate-severe chronic GVHD was 2.4% and 11.8%, respectively. The 3-year overall (OS), progression free (PFS), and graft relapse-free survival (GRFS) were 75.6%, 43.9%, and 39%, respectively. On multivariate analysis, 3-year OS was significantly worse in patients with HCT-CI 653 (hazard ratio [HR], 5.0; 95% confidence interval [CI], 1.1 to 21.8; P\u202f=\u202f.03). Three-year relapse rate, 3-year PFS, and 3-year GRFS were significantly worse in patients with HCT-CI 653 (HR, 3.5; 95% CI, 1.3 to 9.3; P = .01; HR, 3.3; 95% CI, 1.2 to 9.0; P\u202f=\u202f.02; and HR, 4.2; 95% CI, 1.7 to 9.9; P\u202f=\u202f.001, respectively) and in patients with a Deauville score 654 on pretransplant FDG-PET (HR, 4.4; 95% CI, 1.6-12.4; P\u202f=\u202f.005, HR, 3.8; 95% CI, 1.5 to 9.7; P\u202f=\u202f.005; and 3.2; 95% CI, 1.3 to 7.9; P\u202f=\u202f.01, respectively). On univariate analysis, 3-year NRM was significantly worse only in patients with a HCT-CI 653 (HR, 17.6; 95% CI, 1.4 to 221.0). Among relapsed or refractory HL patients undergoing haplo NMA HCT with PT-Cy, pretransplant FDG-PET with a Deauville score 654 and HCT-CI 653 identified patients at high risk of relapse. Moreover, an HCT-CI 653 was associated with higher NRM and lower OS

    Regulatory T cells from patients with end-stage organ disease can be isolated, expanded and cryopreserved according good manufacturing practice improving their function

    Get PDF
    Background Here, we isolated, expanded and functionally characterized regulatory T cells (Tregs) from patients with end stage kidney and liver disease, waiting for kidney/liver transplantation (KT/LT), with the aim to establish a suitable method to obtain large numbers of immunomodulatory cells for adoptive immunotherapy post-transplantation. Methods We first established a preclinical protocol for expansion/isolation of Tregs from peripheral blood of LT/KT patients. We then scaled up and optimized such protocol according to good manufacturing practice (GMP) to obtain high numbers of purified Tregs which were phenotypically and functionally characterized in vitro and in vivo in a xenogeneic acute graft-versus-host disease (aGVHD) mouse model. Specifically, immunodepressed mice (NOD-SCID-gamma KO mice) received human effector T cells with or without GMP-produced Tregs to prevent the onset of xenogeneic GVHD. Results Our small scale Treg isolation/expansion protocol generated functional Tregs. Interestingly, cryopreservation/thawing did not impair phenotype/function and DNA methylation pattern of FOXP3 gene of the expanded Tregs. Fully functional Tregs were also isolated/expanded from KT and LT patients according to GMP. In the mouse model, GMP Tregs from LT or KT patient proved to be safe and show a trend toward reduced lethality of acute GVHD. Conclusions These data demonstrate that expanded/thawed GMP-Tregs from patients with end-stage organ disease are fully functional in vitro. Moreover, their infusion is safe and results in a trend toward reduced lethality of acute GVHD in vivo, further supporting Tregs-based adoptive immunotherapy in solid organ transplantation
    corecore